[1]
V. Zhuikov, N. Kuznietsov, Modeling of electrical and vibration signals of transformers with different magnetic properties, IEEE 33rd International Scientific Conference on Electronics and Nanotechnology (ELNANO), pp.373-377, Kiev, 16-19 April, (2013).
DOI: 10.1109/elnano.2013.6552099
Google Scholar
[2]
T. Biondi, A. Scuderi, E. Ragonese, G. Palmisano, Analysis and modeling of layout scaling in silicon integrated stacked transformers, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp.2203-2210, May, (2006).
DOI: 10.1109/tmtt.2006.872788
Google Scholar
[3]
B. Chen, L. Lou, S. Liu, K. Tang, A semi-analytical extraction method for transformer model, 14th International Symposium on Integrated Circuits (ISIC), pp.428-431, Singapore, 10-12 December, (2014).
DOI: 10.1109/isicir.2014.7029498
Google Scholar
[4]
G. Liang, H. Sun, X. Zhang, X. Cui, Study on parameters calculation and order reduction of transformer model, International Conference on Power System Technology, vol. 1, pp.486-490, (2004).
DOI: 10.1109/icpst.2004.1460043
Google Scholar
[5]
Y.J. Yoon, Y. Lu, R.C. Frye, P.R. Smith, A monolithic spiral transmission line balun, 7th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, pp.248-251, West Point, NY, 26-28 October, (1998).
DOI: 10.1109/epep.1998.734035
Google Scholar
[6]
T.H. Chen, K.W. Chang, S.B. Bui, H. Wang, Broadband monolithic passive baluns and monolithic double-balanced mixer, IEEE Transaction on Microwave Theory and Techniques, vol. 39, no. 12, pp.1980-1986, December, (1991).
DOI: 10.1109/22.106536
Google Scholar
[7]
H.M. Hsu, C.W. Tseng, K.Y. Chan, Characterization of On-Chip Transformer Using Microwave Technique, IEEE Transactions on Electron Devices, vol. 55, no. 3, pp.833-837, March, (2008).
DOI: 10.1109/ted.2007.914841
Google Scholar
[8]
N. Julai, S.P. Chew, K.A. Hamid, Modeling & Analysis Planar Transformer for Power ICs Application, IEEE Region 10 Conference (TENCON), pp.1-4, Hong Kong, 14-17 November, (2006).
DOI: 10.1109/tencon.2006.344027
Google Scholar
[9]
H.K. Chiou, H.Y. Liao, Chien-Chung Chen, S.M. Wang, Cheng-Chung Chen, A 2. 6-GHz fully integrated CMOS power amplifier using power-combining transformer, Microwave and Optical Technology Letters, vol. 52, no. 2, pp.299-302, February, (2010).
DOI: 10.1002/mop.24910
Google Scholar
[10]
N. Seiya, S. Takashi, K. Yoshinori, Study on evaluation techniques of effective conductivity for copper-clad dielectric substrates, Asia-Pacific Microwave Conference (APMC), pp.919-921, Sendai, Japan, 4-7 November, (2014).
Google Scholar
[11]
U.R. Pfeiffer, D. Goren, A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology, IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp.857-865, May, (2007).
DOI: 10.1109/tmtt.2007.895654
Google Scholar
[12]
C.H. Kim, B. Park, High-performance stacked-coil transformers with thick metal layers, Electronics Letters, vol. 50, no, 19, pp.1359-1361, 11 September, (2014).
DOI: 10.1049/el.2014.2502
Google Scholar
[13]
M.K. Khandelwal, B.K. Kanaujia, S. Dwari, S. Kumar, A.K. Gautam, Analysis and design of dual band compact stacked Microstrip patch antenna with defected ground structure for WLAN/WiMax applications, AEU-International Journal of Electronics and Communications, vol. 69, no. 1, pp.39-47, January, (2015).
DOI: 10.1016/j.aeue.2014.07.018
Google Scholar
[14]
A.H. Issa, S.M. Ghayyib, A.S. Ezzulddin, Toward a fully integrated 2. 4 GHz differential pair class-E power amplifier using on-chip RF power transformers for Bluetooth systems, AEU-International Journal of Electronics and Communications, vol. 69, no. 1, pp.182-187, January, (2015).
DOI: 10.1016/j.aeue.2014.08.010
Google Scholar
[15]
A.R. Belabad, N. Masoumi, S.J. Ashtiani, A fully integrated 2. 4 GHz CMOS high power amplifier using parallel class A&B power amplifier and power-combining transformer for WiMAX application, AEU-International Journal of Electronics and Communications, vol. 67, no. 12, pp.1030-1037, December, (2013).
DOI: 10.1016/j.aeue.2013.06.004
Google Scholar
[16]
Q. Zhao, J. Liu, Z. Yu, L. Sun, A new model of stacked transformers considering skin and substrate effects, 11th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-3, Xi'an, 29 October-01 November, (2012).
DOI: 10.1109/icsict.2012.6467680
Google Scholar
[17]
B. Leite, E. Kerherve, J.B. Begueret, D. Belot, An Analytical Broadband Model for Millimeter-Wave Transformers in Silicon Technologies, IEEE Transactions on Electron Devices, vol. 59, no. 3, pp.582-589, 23 January, (2012).
DOI: 10.1109/ted.2011.2180909
Google Scholar
[18]
H. Zheng, D. Zeng, Y. Dongxu, L. Zhang, An accurate compact model with skin and proximity effects for high coupling-coefficient transformers, 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1886-1888, Shanghai, 1-4 November, (2010).
DOI: 10.1109/icsict.2010.5667750
Google Scholar
[19]
B. Leite, E. Kerherve, J.B. Begueret, D. Belot, Design and characterization of CMOS millimeter-wave transformers, SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), pp.402-406, Belem, 3-6 November, (2009).
DOI: 10.1109/imoc.2009.5427555
Google Scholar
[20]
C. Wang, N.Y. Kim, Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology, Microelectronics Journal, vol. 43, no. 3, pp.176-181, March, (2012).
DOI: 10.1016/j.mejo.2011.12.011
Google Scholar
[21]
T. Biondi, A. Scuderi, E. Ragonese, G. Palmisano, Analysis and modeling of layout scaling in silicon integrated stacked transformers, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp.2203-2210, May, (2006).
DOI: 10.1109/tmtt.2006.872788
Google Scholar