Influence of Argon Ion Bombardment on Improvement of Surface Properties of Low Density Polyethylene (LDPE)

Article Preview

Abstract:

In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015 ions/cm2. The optical, chemical and mechanical properties have been investigated using UV-Vis spectroscopy, FTIR and Micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for pristine sample to 2.3 eV for that sample irradiated with the highest fluence of Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing the Ar ion fluences. FTIR spectra showed changes in the chemical properties of the bombarded polymer samples. Argon ion beam inducing increasing in the Vicker's micro-indentation, which may be attributed to the increase in the carbon concentration on the irradiated surface samples and cross-linking effects in the irradiated polyethylene chains.

You might also be interested in these eBooks

Info:

Pages:

124-135

Citation:

Online since:

December 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Charrier, Polymeric Materials and Processing: Plastics, Elastomers and Composites, Hanser Publishers, Munich, New York, (1991).

Google Scholar

[2] J.S. Chen, S.P. Lau, Z. Sun, B.K. Tay, G.Q. Yu, F.Y. Zhu, D.Z. Zhu, H.J. Xu, Surf. Coat. Technol. 138 (2001) 33.

Google Scholar

[3] D. Fink, Fundamentals of Ion-irradiated Polymers, Springer, (2004).

Google Scholar

[4] W. Yuguang, Z. Tonghe, L. Andong, Z. Gu, Surf. Coat. Technol. 157 (2002) 262.

Google Scholar

[5] J.H. Yin, Z.S. Mo, Modern Polymer Physics, Science Press, Beijing, (2001).

Google Scholar

[6] M.F. Zaki W.A. Ghaly, H.S. El-Bahkiry Surf. Coat. Technol. Vol. 275, (2015), 363–368.

Google Scholar

[7] S. Siddhartha, K. Dev Aarya, S.K. Raghuvanshi, J.B.M. Krishna, M.A. Wahab, Radiat. Phys. Chem. 81 (4) (2012) 458.

Google Scholar

[8] Vijay Kumar, R.G. Sonkawade, S.K. Chakarvarti, Paramjit Singh, A.S. Dhaliwal, Radiat. Phys. Chem. 81 (6) (2012) 652.

Google Scholar

[9] M. Šiljegovic', Z.M. Kacˇarevic'-Popovic', N. Bibic', Z.M. Jovanovic', S. Maletic', M. Stchakovsky, A.N. Krklješ, Radiat. Phys. Chem. 80 (12) (2011) 1378.

Google Scholar

[10] AnjumQureshi, Dolly Singh, N.L. Singh, S. Ataoglu, Arif N. Gulluoglu, Ambuj Tripathi, D.K. Avasthi, Nucl. Inst. Methods B 267 (20) (2009) 3456.

Google Scholar

[11] Rohit Verma, R. Dhar, M.C. Rath, S.K. Sarkar, R. Dabrowski, J. Phys. Chem. Solids 73 (2) (2012) 288.

Google Scholar

[12] R.M. Radwan, Y.H.A. Fawzy, A. El-Hag Ali, Radiat. Phys. Chem. 77 (2) (2008) 179.

Google Scholar

[13] Dong H, Bell T. Surf Coat Technol (1999); 111: 29.

Google Scholar

[14] M. F. Zaki Journal of King Saud University – Science (2015) http: /dx. doi. org/10. 1016/j. jksus. 2015. 05. 008.

Google Scholar

[15] Shojaei A., R. Fathi, N. Sheikh, Surf. Coat. Technol. 201 (2007) 7519.

Google Scholar

[16] S. Vinodh Kumar a, B. Ghadei a, J.B.M. Krishna a, S.C. Bhattacharya b, A. Saha. Radiat. Phys. Chem. 78 (2009) 351–355.

Google Scholar

[17] Kumar, V., Sonkawade, R.G., Chakarvarti, S.K., Singh, P., Dhaliwal, A.S.,. Radiat. Phys. Chem. 81, (2012) 652-658.

Google Scholar

[18] Singh, L., Singh, R.,. Nucl. Instrum. Methods Phys. Res. Sect. B 225, (2004) 478-482.

Google Scholar

[19] Turos, A., Abdul-Kader, A.M., Grambole, D., Jagielski, J., Pia˛tkowska, A., Madi, N.K., Al-Maadeed, M.,. Nucl. Instrum. Methods B 249, (2006) 660.

DOI: 10.1016/j.nimb.2006.03.075

Google Scholar

[20] Agielski, J., Turos, A., Bielinski, D., Abdul-Kader, A.M., Piatkowska, A.,. Nucl. Instrum. Methods B 261 (1–2), (2007) 690.

Google Scholar

[21] Al-Qaradawi, I.Y., Madi, N.K., Turos, A., Abdul-Kader, A.M.,. Radiat. Phys. Chem. 76 (2), (2007) 123.

Google Scholar

[22] James F. Ziegler. SRIM-2003. Nucl. Instrum. Methods Phys. Res. Sect B 219–220 (2004) 1027–1036.

Google Scholar

[23] Smith, L., Sandland, G.E.,. An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness. Proc. Inst. Mech. Eng. 1, (1922) 623-641.

DOI: 10.1243/pime_proc_1922_102_033_02

Google Scholar

[24] Alexey Kondyurin, Marcela Bilek . Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space. Ion Beam Treatment of Polymers. DOI: http: /dx. doi. org/10. 1016/B978-0-08-099445-1. 00001-8.

DOI: 10.1016/b978-0-08-099445-1.00004-3

Google Scholar

[25] V.N. Popok, Rev. Adv. Mater. Sci. 30 (2012) 1.

Google Scholar

[26] V. Resta, L. Calcagnile, G. Quarta, L. Maruccio, A. Cola, I. Farella, G. Giancane, L. Valli. Optical and electrical properties of polycarbonate matrices implanted by high energy Cu ions. Nucl. Instrum. Methods Phys. Res. Sect B 312 (2013) 42–47.

DOI: 10.1016/j.nimb.2013.07.004

Google Scholar

[27] S. Toth, M. Fule, M. Veres, I. Pocsik, M. Koos, A. Toth, T. Ujvari, I. Bertoti. Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment. Thin Solid Films 497 (2006) 279 – 283.

DOI: 10.1016/j.tsf.2005.10.050

Google Scholar

[28] Chapiro, A.,. Radiation Chemistry of Polymeric System. Inter-science Publishers, London, (1962) p.354–360.

Google Scholar

[29] J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, (1974) . p.159.

Google Scholar

[30] A., Tayel M.F. Zaki, A.B. El Basaty, Tarek M. Hegazy. Opto-structural characterization of gamma irradiated Bayfol polymer track detector. Journal of Nuclear Materials 442 (2013) 184–188.

DOI: 10.1016/j.jnucmat.2013.08.054

Google Scholar

[31] M.F. Zaki, J. Phys, D: Appl. Phys. 41 (2008). 175404-1-5.

Google Scholar

[32] Y.Q., Wang, R.E., Giedd, M.G., Moss, J., Kaufmann,. Electronic properties of ion-implanted polymer films. Nucl. Instrum. Methods B 127/128 (1), (1997) 710–715.

DOI: 10.1016/s0168-583x(96)01162-7

Google Scholar

[33] J., Robertson, E.P. O'Reilly, Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, (1987) 2946–2957.

Google Scholar

[34] D., Fink, WH., Chung, R., Klett, A., Schmoidt, J., Cardosa, R., Montiel, M.H., Vazqez, L., Wang, F., Hosoi, H., Omichi, G.P., Langer,. Carbonaceous clusters in irradiated polymers as revealed by UV–VIS spectroscopy. Radiat. Eff. Def. Solids 133 (3), (1995).

DOI: 10.1080/10420159508223990

Google Scholar

[35] G. Harbeke, F. Abeles, Optical Properties of Solids, North-Holland, Amsterdam, (1972).

Google Scholar

[36] R.A.M. Rizk, A.M. Abdul-Kader, Z.I. Ali, M. Ali, Effect of ion bombardment on the optical properties of LDPE/EPDM polymer blends, Vacuum 83 (2009) 805-808.

DOI: 10.1016/j.vacuum.2008.07.012

Google Scholar

[37] D.L. Dexter, Phys. Rev. 48 (1956) 101.

Google Scholar

[38] Lakhwant Singh, Kawaljeet Singh Samra. Radiat. Phys. Chem. 77 (2008) 252–258.

Google Scholar

[39] Balanzat, E., Betz, N., Bouffard, S.,. Swift heavy ion modification of polymers. Nucl. Instrum. Methods B 105, (1995) 46.

Google Scholar

[40] Balanzat E., S. Boufard, A. Bouquerel, J. Devy, Chr. Gat_e, Nucl. Instr. and Meth. B 116 (1996) 159.

Google Scholar

[41] Davenas J., X.L. Xu, G. Boiteux, D. Sage, Nucl. Instr. And Meth. B 39 (1989) 754.

Google Scholar

[42] Pivin, J.C.,. Contribution of ionizations and atomic displacements to the hardening of ion irradiated polymers. Thin Solid Films 263, (1995) 185-193.

DOI: 10.1016/0040-6090(95)06561-x

Google Scholar

[43] Dong, H., Bell, T.,. State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surf. Coat. Technol. 111, (1999) 29-40.

DOI: 10.1016/s0257-8972(98)00698-7

Google Scholar

[44] M.F. Zaki , A.M. Abdul-Kader , Afaf Nada and Basma A. El-Badry. Philosophical Magazine. http: /dx. doi. org/10. 1080/14786435. 2013. 827339.

Google Scholar