Effects of Heat Transfer on Microhardness and Microstructure of Friction Stir Welded AA 6061 Aluminum Alloy

Article Preview

Abstract:

In this research work, the effects of heat transfer on microhardness, microstructures of friction stir welded AA 6061-T6 Aluminum alloy butt joints advancing side and retreating side are analyzed. A three dimensional finite element model is developed to study the thermal history in the butt welding of AA 6061 aluminum alloy using ANSYS package. Solid 70 elements are used to develop the model and a moving co-ordinate has been introduced to model the three-dimensional heat transfer process because it reduces the difficulty of modeling the moving tool. In this model, the main parameter considered is the heat input from the tool shoulder and tool pin. As a result, the temperature distributions of the weld at a welding speed of 1.25mm/sec were obtained.

You might also be interested in these eBooks

Info:

Pages:

102-109

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mumim Sahin (2007); Evaluation of the joint interface properties of Austenitic stainless steel joined by friction welding,. Mater Des 2007; 28: 2244–50.

DOI: 10.1016/j.matdes.2006.05.031

Google Scholar

[2] C. Meran, O.E. Canyurt (2010); Friction Stir Welding of austenitic stainless steels,. Journal of Achievements in Materials and Manufacturing Engineering. 43: 432-439.

Google Scholar

[3] R.S. Mishra, Z.Y. Ma (2005); Friction stir welding and processing,. Materials Science and Engineering. R 50: 1–78.

Google Scholar

[4] P. Cavaliere, G. Campanile, F. Panella , A. Squillace (2006); Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by Friction Stir Welding,. Journal of Materials Processing Technology 180 263–270.

DOI: 10.1016/j.jmatprotec.2006.06.015

Google Scholar

[5] W.B. Lee, Y.M. Yeon, S.B. Jung (2003); The improvement of mechanical properties of friction stir welded A356 Al alloy,. Mater. Sci. Eng. A355 154–159.

DOI: 10.1016/s0921-5093(03)00053-4

Google Scholar

[6] Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda (2003); Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng. A354 298–305.

DOI: 10.1016/s0921-5093(03)00008-x

Google Scholar

[7] P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, M.W. Mahoney (2001); Friction stir processing: a tool to homogenize nanocomposites aluminum alloys,. Scripta Mater. 44 61–66.

DOI: 10.1016/s1359-6462(00)00578-9

Google Scholar

[8] N. Siva Prasad, T.K. Sankaranarayanan, (1996); Estimation of residual stresses in weldments using adaptive grids". Computers and Structures, 80 (6), p.1037–1045.

DOI: 10.1016/0045-7949(96)00006-5

Google Scholar

[9] P. Mollicone, D. Camilleri, T.G.F. Gary, T. Comlekci (2006); Simple thermo-elastic-plastic models for welding distortion simulation,. Journal of Materials Processing Technology, 176, p.77–86.

DOI: 10.1016/j.jmatprotec.2006.02.022

Google Scholar

[10] M. Song, R. Kovacevic (2003); Thermal modeling of friction stir welding in a moving coordinate system and its validation,. International Journal of Machine Tools & Manufacture 43 605–615.

DOI: 10.1016/s0890-6955(03)00022-1

Google Scholar

[11] C. M. Chen, and R. Kovacevic (2003); Finite element modeling of friction stir welding-Thermal and thermomechanical analysis,. International journal of machine tools &manufacture 43(13): 1319-1326.

DOI: 10.1016/s0890-6955(03)00158-5

Google Scholar

[12] C.G. Rhodes, M.W. Mahoney, W.H. Bingel (1997); Effects of friction stir welding on microstructure of 7075 aluminium,. Scripta Mater. 3669–75.

DOI: 10.1016/s1359-6462(96)00344-2

Google Scholar

[13] L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium,. Journal of Material Science 33(5): 1243-51.

DOI: 10.1023/a:1004385928163

Google Scholar

[14] C. Majorana A. Carpinteri, (1995); Fully threedimensional thermo-mechanical analysis of steel welding processes,. Journal of Materials Processing Technology, 53, p.85–92.

DOI: 10.1016/0924-0136(95)01964-g

Google Scholar

[15] S.A. Sirkas, P. Papanikos, Kermanidis (2003); Numerical simulation of the laser welding process in butt-joint specimens,. Journal of Materials Processing Technology, 134, p.59–69.

DOI: 10.1016/s0924-0136(02)00921-4

Google Scholar