[1]
M. Massoudi, M. Ramezan, Boundary layer heat transfer analysis of a viscoelastic fluid at a stagnation point, ASME Heat Transfer Division, 130, (1990) 81-86.
DOI: 10.1016/0093-6413(92)90037-b
Google Scholar
[2]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Publication, 66, (1995) 99-105.
Google Scholar
[3]
N. Bachok, A. Ishak, I. Pop, Stagnation-point flow over a stretching/shrinking in a Nanofluid, Nano scale Research letters, 6, (2011) 623-631.
DOI: 10.1186/1556-276x-6-623
Google Scholar
[4]
S. Nadeem, C. Lee, Boundary layer flow of Nanofluid over an exponentially stretching surface, Nano scale Research Letters, 7, (2012) 94-101.
DOI: 10.1186/1556-276x-7-94
Google Scholar
[5]
W. Ibrahim, B. Shankar, M.M. Nandeppanavar, MHD stagnation point flow and heat transfer due to Nanofluid towards a stretching sheet, Int.J. Heat and mass transfer, 56, (2013) 1-9.
DOI: 10.1016/j.ijheatmasstransfer.2012.08.034
Google Scholar
[6]
N. Bachok, A. Ishak, R. Nazar, N. Senu, Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water Nanofluid. " Boundary value problems, 39, (2013) doi: 10. 1186/1687-2770-2013-39.
DOI: 10.1186/1687-2770-2013-39
Google Scholar
[7]
R. Nazar, M. Jaradat, M.A. Norihan, I. Pop, Stagnation-point flow past a shrinking sheet in a Nanofluid, Central European Journal of Physics, 9, (2011) 1195-1202.
DOI: 10.2478/s11534-011-0024-5
Google Scholar
[8]
S.S. Motsa, Y. Khan, S. Shateyi, A New numerical solution of Maxwell fluid over a shrinking sheet in the region of a stagnation point, Mathematical Problems in Engineering, 11, (2012) ID: 290615.
DOI: 10.1155/2012/290615
Google Scholar
[9]
M. Mustafa, T. Hayat, A. Alsaedi, Axisymmetric flow of a Nanofluid over a radially stretching sheet with convective boundary conditions, Current Nano science, 8, (2012) 328-334.
DOI: 10.2174/157341312800620241
Google Scholar
[10]
T. Hayat, S.A. Shehzad, A. Alsaedi, Soret and Dufour effects magneto hydrodynamic (MHD) flow of Casson fluid, Applied Mathematics and Mechanics, 33, (2012) 1301-1312.
DOI: 10.1007/s10483-012-1623-6
Google Scholar
[11]
S. Shateyi, O.D. Makinde, Hydromagnetic Stagnation-point flows towards a radially stretching convectively heated disk, Mathematical Problems in Engineering, (2013), ID 616947. http: /dx. doi. org/10. 1155/2013/616947.
DOI: 10.1155/2013/616947
Google Scholar
[12]
M. Shejkholeslami, S. Abelman, D.D. Ganji, Numerical simulation of MHD Nanofluid flow and heat transfer considering viscous dissipation, Int.J. Heat and Mass transfer, 79, (2014) 212-222.
DOI: 10.1016/j.ijheatmasstransfer.2014.08.004
Google Scholar
[13]
S.K. Nandy, T.R. Mahapatra, Effects of slip and heat generation/absorption on MHD stagnation flow of Nanofluid past a stretching/shrinking surface with convective boundary conditions, Int.J. Heat and Mass Transfer, 64, (2013) 1091-1100.
DOI: 10.1016/j.ijheatmasstransfer.2013.05.040
Google Scholar
[14]
N. Bachok, A. Ishak, I. Pop, Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet, Applied Mathematics and Mechanics, 31, (2010) 1421-1428.
DOI: 10.1007/s10483-010-1372-6
Google Scholar
[15]
S. Nadeem, R.U. Haq, Z.H. Khan, Numerical solution of non-Newtonian Nanofluid flow over a stretching sheet, Applied Nanoscience, 4, (2014) 625-631.
DOI: 10.1007/s13204-013-0235-8
Google Scholar
[16]
W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary layer flow and heat transfer of Nanofluid over a vertical plate, Computers &Fluids, 86, (2013) 433-441.
DOI: 10.1016/j.compfluid.2013.07.029
Google Scholar
[17]
S. Nadeem, R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of Maxwell fluid past a stretching sheet in the presence of nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 45, (2014) 121-126.
DOI: 10.1016/j.jtice.2013.04.006
Google Scholar
[18]
K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, Unsteady MHD boundary layer flow with diffusion and first-order chemical reaction over a permeable stretching sheet with suction or blowing, Chemical Engineering Communications, 200, (2013).
DOI: 10.1080/00986445.2012.712577
Google Scholar
[19]
S.V. Subhashini, R. Sumathi, E. Momoniat, Dual solutions of a mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids, Meccanica, 49, (2014) 2467-2478.
DOI: 10.1007/s11012-014-0016-9
Google Scholar
[20]
N. Sandeep, V. Sugunamma, P. Mohan Krishna, Effects of Radiation on an Unsteady Natural Convective Flow of a EG Nimonic 80a Nanofluid past an Infinite Vertical Plate, Int. Journal of Advanced in Physics Theories Applications, 23, (2013) 36-43.
Google Scholar
[21]
C.R. Natalia, T. Grosan, I. Pop, Stagnation-point flow and mass transfer with chemical reaction past a permeable stretching/shrinking in a Nanofluid, Sains Malaysiana, 41, (2012) 1271-1279.
DOI: 10.17576/jsm-2019-4801-28
Google Scholar
[22]
A.V. Kuznetsov, The onset of Bio-convection in a suspension of Gyrotactic Microorganisms in a fluid layer of finite depth heated from below, Int. Commun. Heat Mass Transfer, 32, (2005) 574-582.
DOI: 10.1016/j.icheatmasstransfer.2004.10.021
Google Scholar
[23]
N. Sandeep, V. Sugunamma P. Mohan Krishna, Aligned Magnetic Field Radiation and Rotation Effects on Unsteady Hydro Magnetic Free Convection Flow Past an Impulsively Moving Vertical Plate in a Porous Medium, Int. Journal. Eng. Mathematics. (2014).
DOI: 10.1155/2014/565162
Google Scholar
[24]
P. Geng, A.V. Kuznetsov, Introducing the concept of effective diffusivity to evaluate the effect of Bio convection on small solid particles, Int. J. Transp. Phenom, 7, (2005a) 321-338.
Google Scholar
[25]
P. Geng, A.V. Kuznetsov, Settling of Bi-dispersed Small Solid Particles in a Dilute Suspension containing Gyrotactic Micro-organisms, Int.J. Eng. Sci, 43, (2005b) 992-1010.
DOI: 10.1016/j.ijengsci.2005.03.002
Google Scholar
[26]
A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a Nanofluid past a vertical plate, Int.J. Thermal. Sci, 49, (2010) 243-247.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[27]
A. Aziz, W.A. Khan, I. Pop, Free convective boundary layer flow past a horizontal flat plate embedded in porous medium filled by Nanofluid containing gyrotactic micro-organisms, Int.J. Thermal Sci., 56, (2012) 48-57.
DOI: 10.1016/j.ijthermalsci.2012.01.011
Google Scholar
[28]
K. Zaimi, A. Ishak, I. Pop, Stagnation point flow toward a stretching/shrinking sheet in a nanofluid containing both nano particles and gyrotactic micro-organisms, J. Heat transfer., 136, (2014) 041405-1-9.
DOI: 10.1115/1.4026011
Google Scholar
[29]
R. Sivaraj and B. Rushi Kumar, Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion, International Journal of Heat and Mass Transfer 55 (2012) 3076–3089.
DOI: 10.1016/j.ijheatmasstransfer.2012.01.049
Google Scholar
[30]
R. Sivaraj and B. Rushi Kumar, Viscoelastic fluid flow over a moving vertical cone and flat plate with variable electric conductivity, International Journal of Heat and Mass Transfer 61 (2013) 119–128.
DOI: 10.1016/j.ijheatmasstransfer.2013.01.060
Google Scholar
[31]
B. Rushi Kumar and R. Sivaraj, MHD viscoelastic fluid non-Darcy flow over a vertical cone and a flat plate, International Communications in Heat and Mass Transfer 40 (2013) 1–6.
DOI: 10.1016/j.icheatmasstransfer.2012.10.025
Google Scholar
[32]
B. Rushi Kumar and R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, International Journal of Heat and Mass Transfer 56 (2013) 370–379.
DOI: 10.1016/j.ijheatmasstransfer.2012.09.001
Google Scholar
[33]
N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed flow of MHD micro polar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology an International. 18 (2015) 738-745.
DOI: 10.1016/j.jestch.2015.05.006
Google Scholar
[34]
N. Sandeep, C. Sulochana, C. S. K. Raju, M. Jayachandrababu, V. Sugunamma, Unsteady boundary layer flow of thermophoretic MHD nano fluid past a stretching sheet with space and time dependent internal heat source/sink, Applications & Applied Mathematics, 10(1) (2015).
DOI: 10.4028/www.scientific.net/ddf.388.14
Google Scholar
[35]
J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Thermo diffusion and hall current effects on an unsteady flow of a nanofluid under the influence of inclined magnetic field, Int.J. Eng. Resaech in Afrika , 20 (2016) 61-79.
DOI: 10.4028/www.scientific.net/jera.20.61
Google Scholar
[36]
C.S.K. Raju, N. Sandeep, Dual solutions for unsteady heat and mass transfer in bio-convection flow towards a rotating cone/plate in a rotating fluid, Int.J. Eng. Resaech in Afrika, 20 (2016)161-176.
DOI: 10.4028/www.scientific.net/jera.20.161
Google Scholar