[1]
M. S. Triantafyllou, and G. S. Triantafyllou, An efficient swimming machine, Scientific American, 272(3), pp.64-70 , (1995).
DOI: 10.1038/scientificamerican0395-64
Google Scholar
[2]
D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, et al, Drag reduction in fish-like locomotion, J. Fluid Mech, vol. 392, pp.183-212, (1999).
DOI: 10.1017/s0022112099005455
Google Scholar
[3]
K. McIsaac, J. Ostrowski, A Geometric Approach to Anguilliform Locomotion: Modelling of an Underwater Eel Robot, Proceedings of the 1999 IEEE Conference of Robotics and Automation (ICRA1999). Detroit, Michigan: IEEE, pp.2843-2848, (1999).
DOI: 10.1109/robot.1999.774028
Google Scholar
[4]
T. Knusten, Designing an underwater eel-like robot and developing anguilliform locomotion control, http: /www. ese. upenn. edu/~sunfest/pastProjects/Papers00/KnutsenTama ra. pdf.
Google Scholar
[5]
J. Liu, Z. Chen, W. Chen, L. Wang, A new type of under water turbine imitating fish-fin for under water robot, Robot, 22(5): pp.427-432, 2000 (in Chinese).
Google Scholar
[6]
H. Xie, D. Zhang, L. Shen, Control System Design and Realization of Bionic Underwater Vehicle Propelled by the Long Flexible Fin Undulation, Journal of Control & Automation, 22 8-2, pp.218-221, 2006 (in Chinese).
Google Scholar
[7]
D. Zhang; L. Wang; J. Yu; M. Tan, Coordinated Transport by Multiple Biomimetic Robotic Fish in Underwater Environment, IEEE Transactions on Control Systems Technology, Vol. 15 , Issue 4, p.658 – 671, (2007).
DOI: 10.1109/tcst.2007.899153
Google Scholar
[8]
J. A. Walker, M. W. Westneat. Performance Limits of Labriform Propulsion and Correlates with Fin Shape and Motion. The Journal of Experimental Biology, vol. 205, no. 2, p.177−187, (2002).
DOI: 10.1242/jeb.205.2.177
Google Scholar
[9]
L. J. Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation. The Journal of Experimental Biology, vol. 204, no. 22, p.379−394, (2001).
DOI: 10.1242/jeb.204.2.379
Google Scholar
[10]
P. R. Bandyopadhyay. Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles. Integrative and Comparative Biology, vol. 42, no. 1, p.102−117, (2002).
DOI: 10.1093/icb/42.1.102
Google Scholar
[11]
N. Kato, M. Furushima. Pectoral Fin Model for Maneuver of Underwater Vehicles. In Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology. Monterrey, CA, p.49−56, (1996).
DOI: 10.1109/auv.1996.532400
Google Scholar
[12]
K. H. Low, A. Willy. Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins. In Proceedings of the IEEE International Conference on Mechatronics & Automation (ICMA2005), Niagara Falls, Canada, p.958−963, (2005).
DOI: 10.1109/icma.2005.1626681
Google Scholar
[13]
S. Guo, Y. Okuda. Characteristic Evaluation of an Underwater Micro Biped Robot with Multi DOF. In Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation, Chengdu, China, p.95−100, (2004).
DOI: 10.1109/icima.2004.1384169
Google Scholar
[14]
S. Guo, Y. Okuda, K. Asaka. A Novel Type of Underwater Micro Biped Robot with Multi DOF. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, Barcelona, Spain, p.4881−4886, (2004).
DOI: 10.1109/robot.2004.1302491
Google Scholar
[15]
H. Liu, K. Kawachi. A Numerical Study of Undulatory Swimming. Journal of Computational Physics, vol. 155, no. 2, p.223−247, (1999).
DOI: 10.1006/jcph.1999.6341
Google Scholar
[16]
H. Liu, K. Kawachi. The Three-dimensional Hydrodynamics of Tadpole Locomotion. The Journal of Experimental Biology, vol. 200, no. 4, p.2807−2819, (1997).
DOI: 10.1242/jeb.200.22.2807
Google Scholar
[17]
R. Ramamurti1, W. C. Sandberg, R. Lohner, J. A. Walker, M.W. Westneat. Fluid Dynamics of Flapping Aquatic Flight in the Bird Wrasse: Three-dimensional Unsteady Computations with Fin Deformation. The Journal of Experimental Biology, vol. 205, no. 19, p.2997−3008, (2002).
DOI: 10.1242/jeb.205.19.2997
Google Scholar
[18]
Hiroyoshi Suzuki, Naomi Kato. A Numerical Study on Unsteady Flow Around a Mechanical Pectoral Fin. International Journal of Offshore and Polar Engineering, vol. 15, no. 3, p.161−167, (2005).
Google Scholar
[19]
Low, K. H. and Willy, A. (2006). Biomimetic motion planning of an undulating robotic fish fin. J. Vib. Control 12, 1337-1359.
DOI: 10.1177/1077546306070597
Google Scholar
[20]
Low, K. H. (2007). Design, development and locomotion control of bio-fish robot with undulating anal fins. Int. J. Robot. Autom. 22, 88-99.
DOI: 10.2316/journal.206.2007.1.206-1009
Google Scholar
[21]
Curet, O. M., Patankar, N. A., Lauder, G. V. and MacIver, M. A. (2011b). Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir. Biomim. 6, 026004.
DOI: 10.1088/1748-3182/6/2/026004
Google Scholar
[22]
Sfakiotakis, M., Lane, D. M. and Davies, B. C. (2001).
Google Scholar
[23]
MacIver, M. A., Patankar, N. A. and Shirgaonkar, A. A. (2010). Energy-information trade-offs between movement and sensing. PLoS Comput. Biol. 6, e1000769.
DOI: 10.1371/journal.pcbi.1000769
Google Scholar
[24]
Shirgaonkar, A. A., Curet, O. M., Patankar, N. A. and Maciver, M. A. (2008). The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol. 211, 3490-3503.
DOI: 10.1242/jeb.019224
Google Scholar
[25]
Flammang, B. E., Lauder, G. V., Troolin, D. R. and Strand, T. E. (2011). Volumetric imaging of fish locomotion. Biol. Lett. 7, 695-698.
DOI: 10.1098/rsbl.2011.0282
Google Scholar
[26]
K. J. Kim and M. Shahinpoor, Ionic polymer–metal composites: II. Manufacturing techniques, Smart Mater. Struct., vol. 12, p.65–79, (2003).
DOI: 10.1088/0964-1726/12/1/308
Google Scholar
[27]
R. Tiwari, E. Garcia, The state of understanding of ionic polymer metal composite architecture: a review, Smart Mater. Struct. 20 (2011) 083001.
DOI: 10.1088/0964-1726/20/8/083001
Google Scholar
[28]
Mazhar Ul Haq, Prof. Zhao Gang, Shaban Usman , Anees Ur Rehman, S.M. Aftab, 2015, Forward Kinematic Analysis of IPMC Actuated Three Link Mechanism for Fin Actuation of Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering Vol. 23 pp.67-75.
DOI: 10.4028/www.scientific.net/jbbbe.23.67
Google Scholar
[29]
Syed-shah KHALID, Liang ZHANG, Xue-wei ZHANG, Ke SUN, Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach, J Zhejiang Univ-Sci A (Appl Phys & Eng) 2013 14(8): 574-582.
DOI: 10.1631/jzus.a1300082
Google Scholar
[30]
Mazhar Ul Haq, Prof. Zhao Gang, Hafiz Muhammad Waqas , Anees Ur Rehman, S.M. Aftab, Deflection Analysis of IPMC Actuated Fin of a Fish like Micro Device, Journal of Biomimetics, Biomaterials, and Biomedical Engineering 2015 Vol. 24 (2015).
DOI: 10.4028/www.scientific.net/jbbbe.24.97
Google Scholar
[31]
ANSYS Mechanical User Guide / Configuring Analysis Settings / Analysis Settings for Most Analysis Types / Solver Controls.
Google Scholar