Numerical Analysis of Asymmetrically Bonded Composite Patch Repair and Effect of In-Plane Skewed Crack Front on the SIF

Article Preview

Abstract:

A nonlinear 3-D finite element analysis was conducted to analyze the crack front behavior of a center cracked aluminum plate, asymmetrically repaired with composite patch. According to experimental observations, the crack front was modeled as an inclined shape from the initial state where the crack front is straight and parallel to the thickness direction from the patched side toward the un-patched side. The skew degree is found to strongly influence the stress intensity factor (SIF) distribution along the crack front. In effect, the obtained trends of the SIF’s distribution are different and changes during crack growth stages. The main finding is that regardless the crack front shape (inclination), the average stress intensity factor through the crack front remains constant and consequently, it means to be an effective parameter to estimate the fatigue life and crack growth of the asymmetrically patched structures. The performed models gave good results compared to the literature and the different findings correlate well with the experimental observations and make sense with a realistic crack development.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Baker, Bonded composite repair of fatigue-cracked primary aircraft structure, Compos. Struct. 47(1) (1999) 431-443.

DOI: 10.1016/s0263-8223(00)00011-8

Google Scholar

[2] A. A. Baker, Repair of cracked or defective metallic aircraft components with advanced fiber composites—an overview of Australian work, Compos. Struct. 2(2) (1984) 153-181.

DOI: 10.1016/0263-8223(84)90025-4

Google Scholar

[3] C. Soutis, F. Z. Hu, Design and performance of bonded patch repairs of composite structures, Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace. Eng. 211(4) (1997) 263-271.

DOI: 10.1243/0954410971532668

Google Scholar

[4] H. Jian-Bin, L. Xu-Dong, M. Zhi-Tao, Fatigue behavior of thick center cracked aluminum plates repaired by two-sided composite patching, Mater. Design. 88 (2015) 331-335.

DOI: 10.1016/j.matdes.2015.09.011

Google Scholar

[5] H. Fekirini, B. Bachir Bouiadjra, M. Belhouari, B. Boutabout, B. Serier, Numerical analysis of the performances of bonded composite repair with two adhesive bands in aircraft structures, Compos. Struct. 82(1) (2008) 84-89.

DOI: 10.1016/j.compstruct.2006.12.004

Google Scholar

[6] B. Bachir Bouiadjra, M. Belhouari, B. Serier, Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode, Compos. Struct. 56(4) (2002) 401-406.

DOI: 10.1016/s0263-8223(02)00023-5

Google Scholar

[7] B. Bachir Bouiadjra, F. Benyahia, , A. Albedah, , B. A. B. Bouiadjra, S. M. Khan, Comparison between composite and metallic patches for repairing aircraft structures of aluminum alloy 7075 T6, Int. J. Fatigue, 80 (2015) 128-135.

DOI: 10.1016/j.ijfatigue.2015.05.018

Google Scholar

[8] M. Ramji, R. Srilakshmi, M. B. Prakash, Towards optimization of patch shape on the performance of bonded composite repair using FEM, Compos. Part B-Eng. 45(1) (2013) 710-720.

DOI: 10.1016/j.compositesb.2012.07.049

Google Scholar

[9] R. Brighenti, Patch repair design optimisation for fracture and fatigue improvements of cracked plates, Int. J. Solids. Struct. 44(3) (2007) 1115-1131.

DOI: 10.1016/j.ijsolstr.2006.06.006

Google Scholar

[10] H. Errouane, Z. Sereir, A. Chateauneuf, Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension. Int. J. Adhes. Adhes. 49 (2014) 64-72.

DOI: 10.1016/j.ijadhadh.2013.12.004

Google Scholar

[11] X. J. Gong, P. Cheng, S. Aivazzadeh, X. Xiao, Design and optimization of bonded patch repairs of laminated composite structures, Compos. Struct. 123 (2015) 292-300.

DOI: 10.1016/j.compstruct.2014.12.048

Google Scholar

[12] D. Ouinas, B. Bachir Bouiadjra, B. Achour, N. Benderdouche, Modelling of a cracked aluminium plate repaired with composite octagonal patch in mode I and mixed mode, Mater. Design. 30(3) (2009) 590-595.

DOI: 10.1016/j.matdes.2008.05.040

Google Scholar

[13] T. Achour, B. Bachir Bouiadjra, B. Serier, Numerical analysis of the performances of the bonded composite patch for reducing stress concentration and repairing cracks at notch, Comp. Mater. Sci. 28(1) (2003) 41-48.

DOI: 10.1016/s0927-0256(03)00054-5

Google Scholar

[14] X. Liu, G. Wang, Progressive failure analysis of bonded composite repairs, Compos. Struct. 81(3) (2007) 331-340.

DOI: 10.1016/j.compstruct.2006.08.024

Google Scholar

[15] C. H. Chue, L. C. Chang, J. S. Tsai, Bonded repair of a plate with inclined central crack under biaxial loading, Compos. Struct. 28(1) (1994) 39-45.

DOI: 10.1016/0263-8223(94)90004-3

Google Scholar

[16] A. Megueni, B. Bachir Bouiadjra, B. Boutabout, Computation of the stress intensity factor for patched crack with bonded composite repair in pure mode II, Compos. Struct. 59(3) (2003) 415-418.

DOI: 10.1016/s0263-8223(02)00285-4

Google Scholar

[17] T. F. Christian, D. O. Hammond, J. B. Cochran, Composite material repairs to metallic airframe components, J. Aircraft. 29(3) (1992) 470-476.

DOI: 10.2514/3.46185

Google Scholar

[18] T. V. Umamaheswar, R. Singh, Modelling of a patch repair to a thin cracked sheet, Eng. Fract. Mech. 62(2) (1999) 267-289.

DOI: 10.1016/s0013-7944(98)00088-5

Google Scholar

[19] M. R. Ayatollahi, R. Hashemi, Computation of stress intensity factors (K I, K II) and T-stress for cracks reinforced by composite patching, Compos. Struct. 78(4) (2007) 602-609.

DOI: 10.1016/j.compstruct.2005.11.024

Google Scholar

[20] J. J. Schubbe, S. Mall, Fatigue behavior in thick aluminum panels with a composite repair, In Procedings of SDM/AIAA Conference. (1998) 2434-2443.

DOI: 10.2514/6.1998-1997

Google Scholar

[21] A. A. Baker, Repair efficiency in fatigue‐cracked aluminium components reinforced with boron/epoxy patches, Fatigue. Fract. Eng. M. 16(7) (1993) 753-765.

DOI: 10.1111/j.1460-2695.1993.tb00117.x

Google Scholar

[22] D. Ouinas, B. Bachir Bouiadjra, B. Serier, The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials, Compos. struct. 78(2) (2007) 278-284.

DOI: 10.1016/j.compstruct.2005.10.012

Google Scholar

[23] R.J. Callinan, L.R.F. Rose, C.H. Wang, Three dimensional stress analysis of crack patching, in: Proceedings of international Conference on Fracture, ICF-9 (1997) 2151–2158.

Google Scholar

[24] Y. W. Kwon, B. L. Hall, Analyses of cracks in thick stiffened plates repaired with single-sided composite patch, Compos. Struct. 119 (2015) 727-737.

DOI: 10.1016/j.compstruct.2014.09.052

Google Scholar

[25] H. Hosseini-Toudeshky, B. Mohammadi, H. R. Daghyani, Mixed-mode fracture analysis of aluminium repaired panels using composite patches, Compos. Sci. Technol. 66(2) (2006) 188-198.

DOI: 10.1016/j.compscitech.2005.04.028

Google Scholar

[26] H. Hosseini-Toudeshky, G. Sadeghi, H. R. Daghyani, Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches, Compos. Struct. 71(3) (2005) 401-406.

DOI: 10.1016/j.compstruct.2005.09.032

Google Scholar

[27] D. C. Seo, J. J. Lee, Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch, Compos. Struct. 57(1) (2002) 323-330.

DOI: 10.1016/s0263-8223(02)00095-8

Google Scholar

[28] W. Y. Lee, J. J. Lee, Successive 3D FE analysis technique for characterization of fatigue crack growth behavior in composite-repaired aluminum plate, Compos. Struct. 66(1) (2004) 513-520.

DOI: 10.1016/j.compstruct.2004.04.074

Google Scholar

[29] J. Aakkula, O. Saarela, An experimental study on the fatigue performance of CFRP and BFRP repaired aluminium plates, Compos. Struct. 118 (2014) 589-599.

DOI: 10.1016/j.compstruct.2014.07.050

Google Scholar

[30] G. C. Sih, Handbook of stress-intensity factors. Lehigh University, Institute of Fracture and Solid Mechanics. (1973).

Google Scholar