[1]
G. Formica, W. Lacarbonara, R. Alessi, Vibrations of carbon nanotube-reinforced composites, Journal of Sound and Vibration. 329(10) (2010) 1875-1889.
DOI: 10.1016/j.jsv.2009.11.020
Google Scholar
[2]
X. He, M. Rafiee, S. Mareishi, K. Liew, Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams, Composite Structures. 131 (2015) 1111-1123.
DOI: 10.1016/j.compstruct.2015.06.038
Google Scholar
[3]
M. Yas, A. Pourasghar, S. Kamarian, M. Heshmati, Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube, Materials and Design. 49 (2013) 583-590.
DOI: 10.1016/j.matdes.2013.01.001
Google Scholar
[4]
A. Alibeigloo, Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity, European Journal of Mechanics-A/Solids. 44 (2014) 104-115.
DOI: 10.1016/j.euromechsol.2013.10.002
Google Scholar
[5]
Z. Lei, L. Zhang, K. Liew, Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method, Composites Part B: Engineering. 77 (2015) 291-303.
DOI: 10.1016/j.compositesb.2015.03.045
Google Scholar
[6]
N. Wattanasakulpong, V. Ungbhakorn, Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Computational Materials Science. 71 (2013) 201-208.
DOI: 10.1016/j.commatsci.2013.01.028
Google Scholar
[7]
H. Rokni, A.S. Milani, R.J. Seethaler, Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer micro cantilevers: Modelling and optimization, European Journal of Mechanics-A/Solids. 49 (2015) 26-34.
DOI: 10.1016/j.euromechsol.2014.06.004
Google Scholar
[8]
C. DeValve, R. Pitchumani, Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes, Composite Structures. 110 (2014) 289-296.
DOI: 10.1016/j.compstruct.2013.12.007
Google Scholar
[9]
M. Heshmati, M. Yas, F. Daneshmand, A comprehensive study on the vibrational behavior of CNT-reinforced composite beams, Composite Structures. 125 (2015) 434-448.
DOI: 10.1016/j.compstruct.2015.02.033
Google Scholar
[10]
S. Kamarian, M. Salim, R. Dimitri, F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, International Journal of Mechanical Sciences. 108 (2016) 157-165.
DOI: 10.1016/j.ijmecsci.2016.02.006
Google Scholar
[11]
M. Donà, A. Palmeri, M. Lombardo, Dynamic analysis of multi-cracked Euler–Bernoulli beams with gradient elasticity. Computers and Structures. 161 (2015) 64-76.
DOI: 10.1016/j.compstruc.2015.08.013
Google Scholar
[12]
Y. Fan, H. Wang, Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments, Composite Structures. 124 (2015) 35-43.
DOI: 10.1016/j.compstruct.2014.12.050
Google Scholar
[13]
P. Zhu, Z. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures. 94(4) (2012) 1450-1460.
DOI: 10.1016/j.compstruct.2011.11.010
Google Scholar
[14]
B. Selim, L. Zhang, K. Liew, Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory, Composite Structures. (2015).
DOI: 10.1016/j.compstruct.2015.10.026
Google Scholar
[15]
C. DeValve, R. Pitchumani, A numerical analysis of carbon nanotube-based damping in rotating composite structures, Composite Structures. 103 (2013) 18-26.
DOI: 10.1016/j.compstruct.2013.03.017
Google Scholar
[16]
M. Kireitseu, D. Hui, G. Tomlinson, Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material, Composites Part B: Engineering. 39(1) (2008) 128-138.
DOI: 10.1016/j.compositesb.2007.03.004
Google Scholar
[17]
H. -S. Shen, Y. Xiang, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Computer Methods in Applied Mechanics and Engineering. 213 (2012) 196-205.
DOI: 10.1016/j.cma.2011.11.025
Google Scholar
[18]
H. Zhou, H. Dou, L. Qin, Y. Chen, Y. Ni, J. Ko, A review of full-scale structural testing of wind turbine blades, Renewable and Sustainable Energy Reviews. 33 (2014) 177-187.
DOI: 10.1016/j.rser.2014.01.087
Google Scholar
[19]
B. Yang, D. Sun, Testing, inspecting and monitoring technologies for wind turbine blades: A survey, Renewable and Sustainable Energy Reviews. 22 (2013) 515-526.
DOI: 10.1016/j.rser.2012.12.056
Google Scholar
[20]
W. Yang, R. Court, J. Jiang, Wind turbine condition monitoring by the approach of SCADA data analysis, Renewable Energy. 53 (2013) 365-376.
DOI: 10.1016/j.renene.2012.11.030
Google Scholar
[21]
W. Liu, B. Tang, J. Han, X. Lu, N. Hu, Z. He, The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review, Renewable and Sustainable Energy Reviews. 44 (2015) 466-472.
DOI: 10.1016/j.rser.2014.12.005
Google Scholar
[22]
Y. Wang, M. Liang, J. Xiang, Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information, Mechanical Systems and Signal Processing. 48(1) (2014) 351-367.
DOI: 10.1016/j.ymssp.2014.03.006
Google Scholar
[23]
D. Mathijsen, Structural health monitoring: composite skins are getting a nervous system, Reinforced Plastics. 59(3) (2015) 139-142.
DOI: 10.1016/j.repl.2015.02.013
Google Scholar
[24]
N. Dervilis, M. Choi, S. Taylor, R. Barthorpe, G. Park, C. Farrar, K. Worden, On damage diagnosis for a wind turbine blade using pattern recognition, Journal of sound and vibration. 333(6) (2014) 1833-1850.
DOI: 10.1016/j.jsv.2013.11.015
Google Scholar
[25]
W. -H. Hu, S. Thöns, R.G. Rohrmann, S. Said, W. Rücker, Vibration-based structural health monitoring of a wind turbine system, Part I: Resonance phenomenon. Engineering Structures. 89 (2015) 260-272.
DOI: 10.1016/j.engstruct.2014.12.034
Google Scholar
[26]
W. -H. Hu, S. Thöns, R.G. Rohrmann, S. Said, W. Rücker, Vibration-based structural health monitoring of a wind turbine system Part II: Environmental/operational effects on dynamic properties, Engineering Structures 89 (2015) 273-290.
DOI: 10.1016/j.engstruct.2014.12.035
Google Scholar
[27]
J. -K. Lee, J. -Y. Park, K. -Y. Oh, S. -H. Ju, J. -S. Lee, Transformation algorithm of wind turbine blade moment signals for blade condition monitoring, Renewable Energy 79 (2015) 209-218.
DOI: 10.1016/j.renene.2014.11.030
Google Scholar
[28]
E. Asnaashari, J.K. Sinha, Comparative study between the R-ODS and DND methods for damage detection in structures, Measurement. 66 (2015) 80-89.
DOI: 10.1016/j.measurement.2015.01.017
Google Scholar
[29]
S. Bagavathiappan, B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring–a review, Infrared Physics and Technology. 60 (2013) 35-55.
DOI: 10.1016/j.infrared.2013.03.006
Google Scholar
[30]
P. Schubel, R. Crossley, E. Boateng, J. Hutchinson, Review of structural health and cure monitoring techniques for large wind turbine blades, Renewable Energy. 51 (2013) 113-123.
DOI: 10.1016/j.renene.2012.08.072
Google Scholar
[31]
J. Baqersad, C. Niezrecki, P. Avitabile, Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry, Mechanical Systems and Signal Processing. 62 (2015) 284-295.
DOI: 10.1016/j.ymssp.2015.03.021
Google Scholar
[32]
P. Cerracchio, M. Gherlone, M. Di Sciuva, A. Tessler, A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite Element Method, Composite Structures. 127 (2015) 69-76.
DOI: 10.1016/j.compstruct.2015.02.081
Google Scholar
[33]
J.H.L. Grave, M.L. Håheim, A.T. Echtermeyer, Measuring changing strain fields in composites with Distributed Fiber-Optic Sensing using the optical backscatter reflectometer, Composites Part B: Engineering. 74 (2015) 138-146.
DOI: 10.1016/j.compositesb.2015.01.003
Google Scholar
[34]
M.C. Koecher, J.H. Pande, S. Merkley, S. Henderson, D.T. Fullwood, A.E. Bowden, Piezoresistive in-situ strain sensing of composite laminate structures, Composites Part B: Engineering. 69 (2015) 534-541.
DOI: 10.1016/j.compositesb.2014.09.029
Google Scholar
[35]
J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, , A. Lagounov, K. Lafdi, Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors, Carbon. 66 (2014) 191-200.
DOI: 10.1016/j.carbon.2013.08.058
Google Scholar
[36]
M. Saeedifar, M. Fotouhi, M.A. Najafabadi, H.H. Toudeshky, Prediction of delamination growth in laminated composites using acoustic emission and Cohesive Zone Modeling techniques, Composite Structures. 124 (2015) 120-127.
DOI: 10.1016/j.compstruct.2015.01.003
Google Scholar
[37]
R. Ruotolo, C. Surace, Natural frequencies of a bar with multiple cracks. Journal of Sound and Vibration. 272(1) (2004) 301-316.
DOI: 10.1016/s0022-460x(03)00761-2
Google Scholar