The Effect of Nano-Sized Air Bubbles on the Mechanical Properties and Natural Frequencies of a Multi-Cracked Composite Bar

Article Preview

Abstract:

In this research, the effect of nanosized air bubbles embedded within carbon nanotubes (CNTs) coated by various thicknesses of alumina (Al2O3) reinforced epoxy resin based composite on the natural frequencies of a multi-cracked bar is investigated in details. The impact of cracks’ locations and depths within the hybrid composite structure on the natural frequency profiles is investigated. The volume fraction of CNTs is fixed to 0.5 wt. % due to the significant improvements reported in the literature when the composite is reinforced with this volume fraction of CNTs. The results of the multi-scale finite element analysis are verified by comparing with previous studies and a good agreement is shown relating to the longitudinal natural frequencies. The results of the research show that the dynamic response of cracked bar is highly sensitive to the volume fractions of nanosized air bubbles located within the composite. The results of the study supported the hypothesis that the nanosized air bubbles can be used to reduce the weight of heavy composite structures along with using of suitable coatings to improve the mechanical properties of the hybrid composite. Furthermore. The results of the study can be employed to detect multiple cracks located within similar structures like wind turbine blade (WTB) fabricated from a hybrid composite structure composed of carbon fiber reinforced modified epoxy resin which contains nanosized air bubbles and CNTs nanofillers coated by Al2O3 at different thicknesses.

You might also be interested in these eBooks

Info:

Pages:

65-84

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Formica, W. Lacarbonara, R. Alessi, Vibrations of carbon nanotube-reinforced composites, Journal of Sound and Vibration. 329(10) (2010) 1875-1889.

DOI: 10.1016/j.jsv.2009.11.020

Google Scholar

[2] X. He, M. Rafiee, S. Mareishi, K. Liew, Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams, Composite Structures. 131 (2015) 1111-1123.

DOI: 10.1016/j.compstruct.2015.06.038

Google Scholar

[3] M. Yas, A. Pourasghar, S. Kamarian, M. Heshmati, Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube, Materials and Design. 49 (2013) 583-590.

DOI: 10.1016/j.matdes.2013.01.001

Google Scholar

[4] A. Alibeigloo, Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity, European Journal of Mechanics-A/Solids. 44 (2014) 104-115.

DOI: 10.1016/j.euromechsol.2013.10.002

Google Scholar

[5] Z. Lei, L. Zhang, K. Liew, Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method, Composites Part B: Engineering. 77 (2015) 291-303.

DOI: 10.1016/j.compositesb.2015.03.045

Google Scholar

[6] N. Wattanasakulpong, V. Ungbhakorn, Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Computational Materials Science. 71 (2013) 201-208.

DOI: 10.1016/j.commatsci.2013.01.028

Google Scholar

[7] H. Rokni, A.S. Milani, R.J. Seethaler, Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer micro cantilevers: Modelling and optimization, European Journal of Mechanics-A/Solids. 49 (2015) 26-34.

DOI: 10.1016/j.euromechsol.2014.06.004

Google Scholar

[8] C. DeValve, R. Pitchumani, Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes, Composite Structures. 110 (2014) 289-296.

DOI: 10.1016/j.compstruct.2013.12.007

Google Scholar

[9] M. Heshmati, M. Yas, F. Daneshmand, A comprehensive study on the vibrational behavior of CNT-reinforced composite beams, Composite Structures. 125 (2015) 434-448.

DOI: 10.1016/j.compstruct.2015.02.033

Google Scholar

[10] S. Kamarian, M. Salim, R. Dimitri, F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, International Journal of Mechanical Sciences. 108 (2016) 157-165.

DOI: 10.1016/j.ijmecsci.2016.02.006

Google Scholar

[11] M. Donà, A. Palmeri, M. Lombardo, Dynamic analysis of multi-cracked Euler–Bernoulli beams with gradient elasticity. Computers and Structures. 161 (2015) 64-76.

DOI: 10.1016/j.compstruc.2015.08.013

Google Scholar

[12] Y. Fan, H. Wang, Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments, Composite Structures. 124 (2015) 35-43.

DOI: 10.1016/j.compstruct.2014.12.050

Google Scholar

[13] P. Zhu, Z. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures. 94(4) (2012) 1450-1460.

DOI: 10.1016/j.compstruct.2011.11.010

Google Scholar

[14] B. Selim, L. Zhang, K. Liew, Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory, Composite Structures. (2015).

DOI: 10.1016/j.compstruct.2015.10.026

Google Scholar

[15] C. DeValve, R. Pitchumani, A numerical analysis of carbon nanotube-based damping in rotating composite structures, Composite Structures. 103 (2013) 18-26.

DOI: 10.1016/j.compstruct.2013.03.017

Google Scholar

[16] M. Kireitseu, D. Hui, G. Tomlinson, Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material, Composites Part B: Engineering. 39(1) (2008) 128-138.

DOI: 10.1016/j.compositesb.2007.03.004

Google Scholar

[17] H. -S. Shen, Y. Xiang, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Computer Methods in Applied Mechanics and Engineering. 213 (2012) 196-205.

DOI: 10.1016/j.cma.2011.11.025

Google Scholar

[18] H. Zhou, H. Dou, L. Qin, Y. Chen, Y. Ni, J. Ko, A review of full-scale structural testing of wind turbine blades, Renewable and Sustainable Energy Reviews. 33 (2014) 177-187.

DOI: 10.1016/j.rser.2014.01.087

Google Scholar

[19] B. Yang, D. Sun, Testing, inspecting and monitoring technologies for wind turbine blades: A survey, Renewable and Sustainable Energy Reviews. 22 (2013) 515-526.

DOI: 10.1016/j.rser.2012.12.056

Google Scholar

[20] W. Yang, R. Court, J. Jiang, Wind turbine condition monitoring by the approach of SCADA data analysis, Renewable Energy. 53 (2013) 365-376.

DOI: 10.1016/j.renene.2012.11.030

Google Scholar

[21] W. Liu, B. Tang, J. Han, X. Lu, N. Hu, Z. He, The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review, Renewable and Sustainable Energy Reviews. 44 (2015) 466-472.

DOI: 10.1016/j.rser.2014.12.005

Google Scholar

[22] Y. Wang, M. Liang, J. Xiang, Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information, Mechanical Systems and Signal Processing. 48(1) (2014) 351-367.

DOI: 10.1016/j.ymssp.2014.03.006

Google Scholar

[23] D. Mathijsen, Structural health monitoring: composite skins are getting a nervous system, Reinforced Plastics. 59(3) (2015) 139-142.

DOI: 10.1016/j.repl.2015.02.013

Google Scholar

[24] N. Dervilis, M. Choi, S. Taylor, R. Barthorpe, G. Park, C. Farrar, K. Worden, On damage diagnosis for a wind turbine blade using pattern recognition, Journal of sound and vibration. 333(6) (2014) 1833-1850.

DOI: 10.1016/j.jsv.2013.11.015

Google Scholar

[25] W. -H. Hu, S. Thöns, R.G. Rohrmann, S. Said, W. Rücker, Vibration-based structural health monitoring of a wind turbine system, Part I: Resonance phenomenon. Engineering Structures. 89 (2015) 260-272.

DOI: 10.1016/j.engstruct.2014.12.034

Google Scholar

[26] W. -H. Hu, S. Thöns, R.G. Rohrmann, S. Said, W. Rücker, Vibration-based structural health monitoring of a wind turbine system Part II: Environmental/operational effects on dynamic properties, Engineering Structures 89 (2015) 273-290.

DOI: 10.1016/j.engstruct.2014.12.035

Google Scholar

[27] J. -K. Lee, J. -Y. Park, K. -Y. Oh, S. -H. Ju, J. -S. Lee, Transformation algorithm of wind turbine blade moment signals for blade condition monitoring, Renewable Energy 79 (2015) 209-218.

DOI: 10.1016/j.renene.2014.11.030

Google Scholar

[28] E. Asnaashari, J.K. Sinha, Comparative study between the R-ODS and DND methods for damage detection in structures, Measurement. 66 (2015) 80-89.

DOI: 10.1016/j.measurement.2015.01.017

Google Scholar

[29] S. Bagavathiappan, B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring–a review, Infrared Physics and Technology. 60 (2013) 35-55.

DOI: 10.1016/j.infrared.2013.03.006

Google Scholar

[30] P. Schubel, R. Crossley, E. Boateng, J. Hutchinson, Review of structural health and cure monitoring techniques for large wind turbine blades, Renewable Energy. 51 (2013) 113-123.

DOI: 10.1016/j.renene.2012.08.072

Google Scholar

[31] J. Baqersad, C. Niezrecki, P. Avitabile, Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry, Mechanical Systems and Signal Processing. 62 (2015) 284-295.

DOI: 10.1016/j.ymssp.2015.03.021

Google Scholar

[32] P. Cerracchio, M. Gherlone, M. Di Sciuva, A. Tessler, A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite Element Method, Composite Structures. 127 (2015) 69-76.

DOI: 10.1016/j.compstruct.2015.02.081

Google Scholar

[33] J.H.L. Grave, M.L. Håheim, A.T. Echtermeyer, Measuring changing strain fields in composites with Distributed Fiber-Optic Sensing using the optical backscatter reflectometer, Composites Part B: Engineering. 74 (2015) 138-146.

DOI: 10.1016/j.compositesb.2015.01.003

Google Scholar

[34] M.C. Koecher, J.H. Pande, S. Merkley, S. Henderson, D.T. Fullwood, A.E. Bowden, Piezoresistive in-situ strain sensing of composite laminate structures, Composites Part B: Engineering. 69 (2015) 534-541.

DOI: 10.1016/j.compositesb.2014.09.029

Google Scholar

[35] J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, , A. Lagounov, K. Lafdi, Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors, Carbon. 66 (2014) 191-200.

DOI: 10.1016/j.carbon.2013.08.058

Google Scholar

[36] M. Saeedifar, M. Fotouhi, M.A. Najafabadi, H.H. Toudeshky, Prediction of delamination growth in laminated composites using acoustic emission and Cohesive Zone Modeling techniques, Composite Structures. 124 (2015) 120-127.

DOI: 10.1016/j.compstruct.2015.01.003

Google Scholar

[37] R. Ruotolo, C. Surace, Natural frequencies of a bar with multiple cracks. Journal of Sound and Vibration. 272(1) (2004) 301-316.

DOI: 10.1016/s0022-460x(03)00761-2

Google Scholar