Design Analysis of Critical Concepts Influence Wind Farm Production and Efficiency

Article Preview

Abstract:

Wind farm deficiency caused by wake turbine interactions has received an important attention by scientific researchers in recent years. However the quality of power production is strongly depends on wind turbines location from others. In this regard, this paper proposes a comprehensive design analysis of crucial concepts that aid to plan for an efficient wind farm design. Indeed, the wake modeling problem is addressed in this analysis by comparing three models with available measured data gotten from literature. A configuration of wind turbines placement within the offshore wind farm as a function of separation distance is investigated in this study considering four wind farms layout. In addition to these elements, four rotor diameters size are evaluated as critical concept for wind turbine selection and production .The results obtained demonstrate that it is complicated to make a balance between three conflicted objectives related to the power production, efficiency and surface land area required for wind farm as a function of these crucial concepts.

You might also be interested in these eBooks

Info:

Pages:

136-150

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hossain, Wind Energy 2050-On the shape of near 100% RE grid, World Wind Energy Association, (2015).

Google Scholar

[2] S. Kim, H. Shin, Y. Joo, K. Kim , A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm, Renew.Energy.74 (2015) 536-543.

DOI: 10.1016/j.renene.2014.08.054

Google Scholar

[3] D, Schillebeeckx, Study of wake effects in wind farms, (2014).

Google Scholar

[4] H. Schümann, F. Pierella, L. Sætran, Experimental investigation of wind turbine wakes in the wind tunnel, Energy Procedia.35 (2013) 285-296.

DOI: 10.1016/j.egypro.2013.07.181

Google Scholar

[5] J. S .González, A. G.Rodríguez, J. C. Mora, M. B. Payán, J. R.Santos, Overall design optimization of wind farms, Renew.Energy.36.7 (2011) 1973-1982.

DOI: 10.1016/j.renene.2010.10.034

Google Scholar

[6] P. Mittal, K. Kulkarni, K. Mitra, A novel hybrid optimization methodology to optimize the total number and placement of wind turbines, Renew.Energy.86 (2016) ,133-147.

DOI: 10.1016/j.renene.2015.07.100

Google Scholar

[7] W. Li, E. Özcan, R. John, Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimization, Renew. Energy .105 (2017) 473-482.

DOI: 10.1016/j.renene.2016.12.022

Google Scholar

[8] P. Hou, W. Hu, C. Chen, M. Soltani, Z. Chen, Optimization of offshore wind farm layout in restricted zones, Energy .113 (2016) 487-496.

DOI: 10.1016/j.energy.2016.07.062

Google Scholar

[9] D. Wilson, S. Rodrigues, C. Segura, I. Loshchilov, F. Hutter, G. L. Buenfil, S. Peña, Evolutionary computation for wind farm layout optimization, Renew. Energy, 126 (2018), 681-691.

DOI: 10.1016/j.renene.2018.03.052

Google Scholar

[10] G. Mosetti, C. Poloni, D. Diviacco, Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm, J. Wind Eng. Ind. Aerodyn.51.1 (1994) 105-116.

DOI: 10.1016/0167-6105(94)90080-9

Google Scholar

[11] J. Herbert-Acero, O. Probst, P.-E. Réthoré, G. Larsen, K. Castillo-Villar, A review of methodological approaches for the design and optimization of wind farms, Energies .7.11 (2014) 6930-7016.

DOI: 10.3390/en7116930

Google Scholar

[12] R. Shakoor, M. Yusri, A. Raheem,Y. Wu, Wake effect modeling: A review of wind farm layout optimization using Jensen‏׳ s model, Renew. Sustain. Energy Rev.58 (2016) 1048-1059.

DOI: 10.1016/j.rser.2015.12.229

Google Scholar

[13] S. Chowdhury, J. Zhang, A. Messac, L. Castillo, Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation, Renew. Energy. 38.1 (2012) 16-30.

DOI: 10.1016/j.renene.2011.06.033

Google Scholar

[14] W. Husien, W. El-Osta, E. Dekam, Effect of the wake behind wind rotor on optimum energy output of wind farms, Renew.Energy.49 (2013) 128-132.

DOI: 10.1016/j.renene.2012.01.048

Google Scholar

[15] A. Behnood, H. Gharavi, B. Vahidi, G. H. Riahy, Optimal output power of not properly designed wind farms, considering wake effects, Int. J. Electr. Power Energy Syst.63 (2014) 44-50.

DOI: 10.1016/j.ijepes.2014.05.052

Google Scholar

[16] J. Lee, E. Son, B. Hwang, S. Lee, Blade pitch angle control for aerodynamic performance optimization of a wind farm, Renew.Energy.54 (2013) 124-130.

DOI: 10.1016/j.renene.2012.08.048

Google Scholar

[17] N. J. Choi, S. Hyun Nam, J. Hyun Jeong, K. Chun Kim, Numerical study on the horizontal axis turbines arrangement in a wind farm: Effect of separation distance on the turbine aerodynamic power output, J. Wind Eng. Ind. Aerodyn.117 (2013) 11-17.

DOI: 10.1016/j.jweia.2013.04.005

Google Scholar

[18] A. Kusiak, Z. Song, Design of wind farm layout for maximum wind energy capture, Renew. energy.35.3 (2010) 685-694.

DOI: 10.1016/j.renene.2009.08.019

Google Scholar

[19] S. A. MirHassani, A. Yarahmadi, Wind farm layout optimization under uncertainty, Renew. Energy. 107 (2017), 288-297.

DOI: 10.1016/j.renene.2017.01.063

Google Scholar

[20] Y. Chen, H. Li, K. Jin, Q. Song, Wind farm layout optimization using genetic algorithm with different hub height wind turbines, Energy Convers. Manag..70 (2013) 56-65.

DOI: 10.1016/j.enconman.2013.02.007

Google Scholar

[21] S. Xie, C .Archer, Self similarity and turbulence characteristics of wind turbine wakes via large ddy simulation, W.Energy .18.10 (2015) 1815-1838.

DOI: 10.1002/we.1792

Google Scholar

[22] T. Göçmen, P. Van Der Laan, P. E. Réthoré, A. P. Diaz, G. C. Larsen, S. Ott, Wind turbine wake models developed at the technical university of Denmark: A review, Renew. Sustain. Energy Rev. 60 (2016) 752-769.

DOI: 10.1016/j.rser.2016.01.113

Google Scholar

[23] S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, and S. Larsen, Analytical modelling of wind speed deficit in large offshore wind farms, W. energy. 9 (2006) 39-53.

DOI: 10.1002/we.189

Google Scholar

[24] N. O. Katic, I., Hojstrup, J., Jensen, A simple model for cluster efficiency. European wind energy association conference and exhibition. 1986. pp.407-410.

Google Scholar

[25] T. Ishihara, A. Yamaguchi, and Y. Fujino, Development of a new wake model based on a wind tunnel experiment, Global wind power .6 (2004).

Google Scholar

[26] J. Serrano González, M. Burgos Payán, J. M. R. Santos, F. González-Longatt, A review and recent developments in the optimal wind-turbine micro-siting problem, Renew. Sustain. Energy Rev. 30 (2014) 133-144.

DOI: 10.1016/j.rser.2013.09.027

Google Scholar

[27] A. Peña ,O. Rathmann, Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient, W. Energy .17.8 (2014) 1269-1285.

DOI: 10.1002/we.1632

Google Scholar

[28] J. Feng, W. Z. Shen, Wind farm layout optimization in complex terrain: A preliminary study on a Gaussian hill, Journal of Physics: Conference Series.IOP Publishing. 524(2014).

DOI: 10.1088/1742-6596/524/1/012146

Google Scholar

[29] M. Gaumond, P. E. Réthoré, A. Bechmann, S. Ott, G. C .Larsen, A Pena Diaz, K. S .Kurt, Benchmarking of wind turbine wake models in large offshore wind farms, Proceedings of the Science of Making Torque From Wind .2012, pp.9-11.

DOI: 10.1002/we.1625

Google Scholar

[30] F. Port, Y. Wu, and C. Chen, A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm, Energies. 6.10 (2013) 5297-5313.

DOI: 10.3390/en6105297

Google Scholar

[31] Information on Https://www.thewindpower.net.

Google Scholar

[32] Information on Https://en.wind-turbine-models.com.

Google Scholar

[33] Vestas, General specification, V112-3.0 MW IEC IIA, 2 (2009).

Google Scholar

[34] Thrust coefficient ENERCON E-82 E2 1 of 1 Rated power output : Power curve : Standard Air Density. 2010, p.82.

Google Scholar

[35] S. J.Andersen, J. N. Sørensen, S.Ivanell, R. F. Mikkelsen , Comparison of engineering wake models with CFD simulations. In: Journal of physics: Conference series, IOP Publishing, 2014, p.012161.

DOI: 10.1088/1742-6596/524/1/012161

Google Scholar