Fuzzy Control of Product Quality in a Manufacturing System Modeled with Interval Constrained Petri Net

Article Preview

Abstract:

One of the main aspects of small and medium-sized enterprises is the quality of the products, in a production system several parameters and non-temporal variables must respect very strict variation intervals such as weight measurements, in the chemical industry. This parameter also takes a fundamental part in the quality of the product. The correct production process is based on a given percentage of each material. We chose a food production system where the quality requirements are very high. In this article, we propose a production system modeling by interval constraint Petri net. And we controlled these intervals with a fuzzy type-2 controller for decision making.

You might also be interested in these eBooks

Info:

Pages:

151-161

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Khansa, J.P. Denat and S. Collart-Dutilleul (1996), PTime Petri Nets for Manufacturing Systems' Wodes,96, Edinburgh UK, August 19-21, pp.94-102, International Workshop on Discrete Event Systems.

Google Scholar

[2] S. Calvez, P. Aygalinc, and W. Khansa (1997), P-time PN for manufacturing systems with staying times constraints,, IFAC Congress, Belfort, France, p.495– 500, May (1997).

DOI: 10.1016/s1474-6670(17)43571-3

Google Scholar

[3] A. Slimane, S. Kebdani, B. Bouchouicha, M. Benguediab, S. Slimane, K. Bahram, et al., An interactive method for predicting industrial equipment defects,, The International Journal of Advanced Manufacturing Technology, pp.1-11, (2018).

DOI: 10.1007/s00170-017-1416-5

Google Scholar

[4] P. Yim, A. Lefort, and A. Hebrard System Modelling with Hypernets" ETFA,96 IEEE Conference, pp.37-47, Paris, October (1996).

DOI: 10.1109/etfa.1995.496761

Google Scholar

[5] Collart Dutilleul S., H. Dhouibi and E.Craye. (2003), Internal Robustness of Discret Event System with interval constraints in repetitive functioning mode,, Advanced Computer Systems conference, Miedzyzdroje Poland, pp.353-361.

Google Scholar

[6] Collart Dutilleul S., H. Dhouibi and E.Craye., (2004) Tolerance analysis approach with interval constrained Petri nets,, European Simulation and Modelling Conference, Paris, pp.265-272.

Google Scholar

[7] David R. and H. Alla (1992), Petri Nets and Grafcet : Tools for Modelling Discrete Event Systems, Prentice- Hall.

Google Scholar

[8] Collart Dutilleul S., Denat J.P and Chetouane F (2002). External Robust Control of Electroplating Lines , IEEE Conference- Hammamet October, pp.195-204.

DOI: 10.1109/icsmc.2002.1173440

Google Scholar

[9] H. Dhouibi, S. Collart Dutilleul, E. Craye and L. Nabli (2005), Computing Intervals Constrainted Petri Nets: a tobacco manufacturing application,, IMACS conference,Paris, pp.440-446.

DOI: 10.1515/ijmsp.2008.9.3-4.217

Google Scholar

[10] . Collart Dutilleul S., H. Dhouibi, E. Craye, « Internal Robustness of Discret Event System with internal constraints in repetitive functionning mode ». ACS'2003 conference, Miedzyzdroje, Poland.

Google Scholar

[11] DHOUIBI Hedi, Utilisation des réseaux de petri a intervalles pour la régulation d'une qualité : application a une manufacture de tabac,. PhD thesis in automatic and industrial computing, the central school of Lille, (2005).

Google Scholar

[12] NABLI Lotfi and DHOUIBI Hédi . Using Interval Constrained Petri Nets for Regulation of Quality: The Case of Weight in Tobacco Factory, INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL. 13, NO. 3, SEPTEMBER 2008,178-188.

Google Scholar

[13] Daniel Ramot, Menahem Friedman, Gideon Langholz, and Abraham Kandel, Complex Fuzzy Logic,, IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 4, pp.450-461, August (2003).

DOI: 10.1109/tfuzz.2003.814832

Google Scholar

[14] J. Bugarin, and S. Barro , Fuzzy reasoning supported by Petri nets,, IEEE Transactions on Fuzzy Systems, Vol.2, No.2, pp.135-150, (1994).

DOI: 10.1109/91.277962

Google Scholar

[15] S. M. Chen, J. M. Ke, and J. F. Chang, Knowledge representation using fuzzy Petri nets,, IEEE Transaction on Knowledge and Data Engineering, Vol. 2, No. 3, pp.311-319, (1990).

DOI: 10.1109/69.60794

Google Scholar

[16] G. Looney , Fuzzy Petri nets for rule-based decision making,, IEEE Transaction on Systems, Man, and Cybernetics, Vol. 18, No. 1, pp.178-183, 1998. IEEE International Conference on Robotics and Automation, Atlanta, Georgia, USA, Vol. 1, pp.598-603, May (1993).

DOI: 10.1109/21.87067

Google Scholar

[17] Wagner, Christian and Miller, Simon and Garibaldi, Jonathan M. and Anderson, Derek T. and Havens, Timothy C. From interval-valued data to general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 23 (2). pp.248-269. ISSN 1063-6706, (2014).

DOI: 10.1109/tfuzz.2014.2310734

Google Scholar

[18] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I,, Inform. Sci., vol.8, pp.199-249, (1975).

DOI: 10.1016/0020-0255(75)90036-5

Google Scholar

[19] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science Pub. Co., (1985).

Google Scholar