Advective Transport Modeling for Spatial Analysis of Atmospheric Aerosols over Lagos Area of South Western Nigeria

Article Preview

Abstract:

In this study atmospheric aerosols distribution over Lagos area of southwestern part of Nigeria was analyzed using backward air mass trajectory model. GPS information of the study region was used to simulate meteorological variables and aerosol data that have been stored by satellite imagery from the National Oceanography and Atmospheric Administration (NOAA) and Air Resource Laboratory (ARL). Hybrid Single-Particle Lagrangian Integrated Trajectories HYSPLIT was used to determine the wind-field information and also to obtain the backward air mass trajectory for atmospheric aerosols transport pattern at heights 0, 1000m and 2000m above ground level. The result showed that aerosols of sea-salt origin evolved from Atlantic ocean and spread over Lagos during the period under consideration. The average wind speed observed within the period ranged between 4 and 7m/s in south westerly direction which is attributed to the influence Atlantic Ocean. The results also showed that aerosol traversing Lagos area are mainly sea salts

You might also be interested in these eBooks

Info:

Pages:

91-98

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. I. Abam, G. O. Unachukwa. Vehicular emissions and air quality standards in Nigeria. European Journal of Scientific Research, 2009, 34 (4), 550–560.

Google Scholar

[2] World Health Organization (WHO), Hydrogen sulfide. Geneva World Health Organization, Environmental Health Criteria, 2005; No. 19.

Google Scholar

[3] J. H. Seinfeld, S. N. Pandis. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, John Wiley, New York. intersci. Publ., (1998).

Google Scholar

[4] A. A. Oyem, A. I. Igbafe A.I. Analysis of the Atmospheric Aerosol Loading over Nigeria, Environmental Research Journal, 2010, 4 (2), 204-211.

DOI: 10.3923/erj.2010.204.211

Google Scholar

[5] B. U. Temisanren, A. I. Igbafe. Modelling the Transport and Dispersion of Atmospheric Aerosols over Warri Area of the Niger Delta Sub region of Nigeria. Advance Materials Research, 2013, vol 824, pp.643-649.

DOI: 10.4028/www.scientific.net/amr.824.643

Google Scholar

[6] Intergovernmental Panel on Climate Change (IPCC). Climate change. The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007, p.128.

DOI: 10.1017/cbo9781107415324

Google Scholar

[7] M. P. Hess, Koepke, I. Schult. Optical properties of aerosols and clouds. Bull. Am. Meteor. Soc., 1998, 79, 831-845.

DOI: 10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2

Google Scholar

[8] M. O. Andreae. Climatic effects of changing atmospheric aerosol levels. In: Henderson-sellers, A. (Ed), World Survey of Climatology. Future Climates of the World, vol. 16. Elsevier, Amsterdam, 1995, pp.341-392.

DOI: 10.1016/s0168-6321(06)80033-7

Google Scholar

[9] J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P.J. Van der Linden. Intergovernmental Panel on Climate Change (IPCC). Climate change: An Overview, the Scientific Basis in the Climate System; Cambridge University. New York, 2001, pp.1-881.

DOI: 10.1002/joc.763

Google Scholar

[10] M. L. Witek, P. J. Flatau, Quinnand, D. L. Westphal. Global sea salt modelling: shipboard measurement. J. Geophys. Res., 2007, 112: 1-14.

Google Scholar

[11] S. L. Gong, L. A. Barrie, J. P. Blanchet. Modeling sea salt aerosols in the atmosphere, Journal of Geophysical Research, 102(D3), 1997, 3805-3818.

DOI: 10.1029/96jd02953

Google Scholar

[12] S. Syed. Atmospheric Corrosion of Materials, Emirate Journal for Engineering Research, 2006, 11(1), 1-24.

Google Scholar

[13] G. D. Djolov, D. L. Yordanov, D. E. Syrakov. Modelling Long-range Transport of Air pollutants with Atmospheric Boundary Layer Chemistry, Boundary Layer Meteorology, 19987, 41, 407-416.

DOI: 10.1007/bf00120454

Google Scholar

[14] F. Raes. Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 1995, 100, 2893-2903.

DOI: 10.1029/94jd02832

Google Scholar

[15] G. A. Briggs. Plume Rise, U.S. Atomic Energy Commission Division of Technical Information Publication. Tennessee, U.S.A., 1969, 81p.

Google Scholar

[16] R. R. Draxler, G. D Hess. An Overview of the HYSPLIT-4 Modeling System for Trajectories, Dispersion, and Deposition, Australian Meteorological Magazine, 1998, 47, 295-308.

Google Scholar

[17] Y. J. Han, T. M. Holsen, P. K. Hopke, S. M. Yi. Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. Environ. Sci. Technol., 2005, 39, 1715–1723, doi:10.1021.

DOI: 10.1021/es0498540

Google Scholar

[18] R. R. Draxler, G. D. Hess. Description of the HYSPLIT-4 Modeling System, NOAA Technical Memorandum ERL, 1997, ARL-224.

Google Scholar

[19] A. A. Oketola, O. Osibanjo. Estimating sectoral pollution load in Lagos by Industrial Pollution Projection System (IPPS): Employment versus Output. Toxicological & Environmental Chemistry, (2009).

DOI: 10.1080/02772240802614499

Google Scholar

[20] I. U. Onyekwelu, K. A. Junaid, O. M. Ogungbuyi. Recent trends in the pollution load on the Lagos Lagoon – A National perspective. Presented by Federal Ministry of Environment at the Ecological Sustainable Industrial Development Workshop, (2003).

Google Scholar

[21] A. Smirnov, B. N. Holben, S. M. Sakerin, D. M. Kabanov, I. Slutsker, M. Chin, T. L. Diehl, L. A. Remer, R. Kahn, A. Ignatov, L. Liu, M. Mishchenko, T. F. Eck, T. L. Kucsera, D. Giles, O. V. Kopelevich. Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model. Geophys. Res. Lett., 2006, 33, L14817.

DOI: 10.1029/2006gl026051

Google Scholar