[1]
T. Adefarati, N. B. Papy, M. Thopil, H. Tazvinga, "non-renewable distributed generation technologies: a review, in Handbook of Distributed Generation: Springer, 2017, 69-105.
DOI: 10.1007/978-3-319-51343-0_2
Google Scholar
[2]
P. O. Kriett, M. Salani, Optimal control of a residential microgrid, Energy, 42, (2012) 321-330.
DOI: 10.1016/j.energy.2012.03.049
Google Scholar
[3]
R. J. Howlett, E. Maleviti, Sustainability in Energy and Buildings. Springer, (2012).
Google Scholar
[4]
T. Ackermann, G. Andersson, L. Söder, Distributed generation: a definition1, Electric power systems research, 57 (2001) 195-204.
DOI: 10.1016/s0378-7796(01)00101-8
Google Scholar
[5]
R. Singh, R. C. Bansal, A. R. Singh, R. Naidoo, Multi-Objective Optimization of Hybrid Renewable Energy System Using Reformed Electric System Cascade Analysis for Islanding and Grid Connected Modes of Operation, IEEE Access, 6 (2018) 47332-47354.
DOI: 10.1109/access.2018.2867276
Google Scholar
[6]
T. Adefarati, R. Bansal, Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources, Applied Energy, 206 (2017) 911-933.
DOI: 10.1016/j.apenergy.2017.08.228
Google Scholar
[7]
Deep Cycle GEL VRLA Batteries. Available: http://www.ritarpower.com/battery/Energy% 20Storage%20Battery/DG%20Series/?gclid=EAIaIQobChMIlJKHs6Lt3gIVZDPTCh3duQgnEAAYASAAEgL-c_D_BwE, Accessed: December, (2018).
Google Scholar
[8]
M. Motevasel, A. R. Seifi, T. Niknam, Multi-objective energy management of CHP (combined heat and power)-based micro-grid, Energy, 51 (2013), pp.123-136.
DOI: 10.1016/j.energy.2012.11.035
Google Scholar
[9]
C. Chen, S. Duan, T. Cai, B. Liu, G. Hu, Optimal allocation and economic analysis of energy storage system in microgrids, IEEE Transactions on Power Electronics, 26 (2011) pp.2762-2773.
DOI: 10.1109/tpel.2011.2116808
Google Scholar
[10]
S. Bracco, F. Delfino, F. Pampararo, M. Robba, M. Rossi, A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles, Energy Conversion and Management, 96 (2015), pp.511-520.
DOI: 10.1016/j.enconman.2015.03.013
Google Scholar
[11]
J. Kaldellis, D. Zafirakis, and K. Kavadias, Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers,, Energy Policy, vol. 42, pp.105-117, (2012).
DOI: 10.1016/j.enpol.2011.11.054
Google Scholar
[12]
U. Akram, M. Khalid, S. Shafiq, Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system, IET Renewable Power Generation, 12 (2017) 72-80.
DOI: 10.1049/iet-rpg.2017.0010
Google Scholar
[13]
A. Ogunjuyigbe, T. Ayodele, O. Akinola, Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building, Applied Energy, 171 (2016) 153-171.
DOI: 10.1016/j.apenergy.2016.03.051
Google Scholar
[14]
P. Yang, A. Nehorai, Joint optimization of hybrid energy storage and generation capacity with renewable energy, IEEE Transactions on Smart Grid, 5 (2014) 1566-1574.
DOI: 10.1109/tsg.2014.2313724
Google Scholar
[15]
S. Ahmadi, S. Abdi, Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system, Solar Energy, 13 (2016), pp.366-374.
DOI: 10.1016/j.solener.2016.05.019
Google Scholar
[16]
R. Atia, N. Yamada, Sizing and analysis of renewable energy and battery systems in residential microgrids, IEEE Transactions on Smart Grid, 7 (2016) 1204-1213.
DOI: 10.1109/tsg.2016.2519541
Google Scholar
[17]
Y. Wang, B. Wang, C.-C. Chu, H. Pota, R. Gadh, Energy management for a commercial building microgrid with stationary and mobile battery storage, Energy and Buildings, 116 (2016) 41-150.
DOI: 10.1016/j.enbuild.2015.12.055
Google Scholar
[18]
200W solar panel specifications. Available: http://www.centsys.co.za/upload/ CENTSYS%20Documentation/0_07_B_0133%20200W%20Solar%20Panel%20Specifications%20sheet-29062015-NG.pdf, Accessed: December, (2018).
Google Scholar
[19]
J. Aghaei, M.-I. Alizadeh, Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems), Energy, 55 (2013), 1044-1054.
DOI: 10.1016/j.energy.2013.04.048
Google Scholar
[20]
L. Zhang, N. Gari, L. V. Hmurcik, Energy management in a microgrid with distributed energy resources, Energy Conversion and Management, 78 (2014) 297-305.
DOI: 10.1016/j.enconman.2013.10.065
Google Scholar
[21]
A. Yahiaoui, K. Benmansour, M. Tadjine, Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria, Solar Energy, 137 (2016) 1-10.
DOI: 10.1016/j.solener.2016.07.050
Google Scholar
[22]
M. Izadbakhsh, M. Gandomkar, A. Rezvani, and A. Ahmadi, Short-term resource scheduling of a renewable energy based micro grid,, Renewable Energy, vol. 75, pp.598-606, (2015).
DOI: 10.1016/j.renene.2014.10.043
Google Scholar
[23]
12V 150AH tubular lead-acid rechargeable battery. Available: http://www.communica.co.za/Catalog/Details/P0177942046, Accessed: December, (2018).
Google Scholar
[24]
List of wind farms in South Africa. Available: https://en.wikipedia.org/wiki/List_of_wind_farms_in_South_Africa, Accessed: December, (2018).
Google Scholar
[25]
These are the 5 biggest green energy projects in SA - all wind farms. Available: https://www.businessinsider.co.za/5-massive-new-renewable-energy-projects-that-transformed-south-africas-landscape-2018-4, Accessed: December, (2018).
Google Scholar
[26]
Wind Farms in South Africa. Available: http://www.turbines.co.za/wind-farms/wind-farms-in-south-africa/, Accessed: December, (2018).
DOI: 10.1049/pbpo171e_ch12
Google Scholar
[27]
T. Adefarati, R. Bansal, Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources, Applied energy, 185 (2019) 1089-1114.
DOI: 10.1016/j.apenergy.2018.12.050
Google Scholar
[28]
H. A. Gabbar, Energy In Infrastructures, Energy Conservation in Residential, Commercial, and Industrial Facilities, (2017) 1-14.
DOI: 10.1002/9781119422099.ch1
Google Scholar
[29]
T. Adefarati, R. C. Bansal, J. J. Justo, Reliability and economic evaluation of a microgrid power system,, Energy Procedia, 142, (2017) 43-48.
DOI: 10.1016/j.egypro.2017.12.008
Google Scholar
[30]
K. Al Mamun and M. T. O. Amanullah, Smart Energy Grid Design for Island Countries.,.
Google Scholar
[31]
H. Tazvinga, M. Thopil, P. B. Numbi, and T. Adefarati, Distributed renewable energy technologies,, in Handbook of Distributed Generation, Springer, New york, (2017), pp.3-67.
DOI: 10.1007/978-3-319-51343-0_1
Google Scholar
[32]
T. Adefarati, R. C. Bansal, J. J. Justo, Techno-economic analysis of a PV–wind–battery–diesel standalone power system in a remote area, The Journal of Engineering, 13 (2017), 740-744.
DOI: 10.1049/joe.2017.0429
Google Scholar
[33]
R. Belfkira, L. Zhang, G. Barakat, Optimal sizing study of hybrid wind/PV/diesel power generation unit, Solar Energy, 85 (2011) 100-110.
DOI: 10.1016/j.solener.2010.10.018
Google Scholar
[34]
P. C. Del Granado, Z. Pang, S. W. Wallace, Synergy of smart grids and hybrid distributed generation on the value of energy storage, Applied Energy, 170 (2016), 476-488.
DOI: 10.1016/j.apenergy.2016.01.095
Google Scholar
[35]
A. K. Azad, M. Rasul, M. Alam, S. A. Uddin, and S. K. Mondal, Analysis of wind energy conversion system using weibull distribution, Procedia Engineering, 90 (2014) 725-732.
DOI: 10.1016/j.proeng.2014.11.803
Google Scholar
[36]
M. S. Adaramola, M. Agelin-Chaab, S. S. Paul, Assessment of wind power generation along the coast of Ghana, Energy Conversion and Management, 77 (2014), 61-69.
DOI: 10.1016/j.enconman.2013.09.005
Google Scholar
[37]
M. Jamil, Wind power statistics and evaluation of wind energy density, Wind Engineering, (1994) 227-240.
Google Scholar
[38]
O. Ohunakin, M. S. Adaramola, O. M. Oyewola, Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria, Applied energy, 88 (2011) 3197-3206.
DOI: 10.1016/j.apenergy.2011.03.022
Google Scholar
[39]
B. Wu, A. Maleki, F. Pourfayaz, M. A. Rosen, Optimal design of stand-alone reverse osmosis desalination driven by a photovoltaic and diesel generator hybrid system, Solar Energy, 163 (2018), 91-103.
DOI: 10.1016/j.solener.2018.01.016
Google Scholar
[40]
H. Zhang, H. Sun, Q. Zhang, G. Kong, Microgrid Spinning Reserve Optimization with Improved Information Gap Decision Theory, Energies, 11 (2018) 2347.
DOI: 10.3390/en11092347
Google Scholar
[41]
U. Akram, M. Khalid, S. Shafiq, An Improved Optimal Sizing Methodology for Future Autonomous Residential Smart Power Systems, IEEE Access, 6 (2018), 5986-6000.
DOI: 10.1109/access.2018.2792451
Google Scholar
[42]
A. Kaabeche, M. Belhamel, R. Ibtiouen, Techno-economic valuation and optimization of integrated photovoltaic/wind energy conversion system, Solar energy, 85 (2011), 2407-2420, (2011).
DOI: 10.1016/j.solener.2011.06.032
Google Scholar
[43]
J. Driesen, F. Katiraei, Design for distributed energy resources, IEEE Power and Energy Magazine, 6 (2008).
Google Scholar
[44]
A. Kumar, A. R. Singh, Y. Deng, X. He, P. Kumar, R. C. Bansal, A Novel Methodological Framework for the Design of Sustainable Rural Microgrid for Developing Nations, IEEE Access, 6 (2018), 24925-24951.
DOI: 10.1109/access.2018.2832460
Google Scholar
[45]
HOMER Pro Version 3.11 User Manual,, Available: https://www.homerenergy.com/pdf/HOMERHelpManual.pdf, Accessed on: October, (2018).
Google Scholar
[46]
O. S. Ohunakin, O. M. Oyewola, and M. S. Adaramola, Economic analysis of wind energy conversion systems using levelized cost of electricity and present value cost methods in Nigeria, International Journal of Energy and Environmental Engineering, 4 (2013), p.2.
DOI: 10.1186/2251-6832-4-2
Google Scholar
[47]
Y. P. Kumar, R. Bhimasingu, Renewable energy based microgrid system sizing and energy management for green buildings, Journal of Modern Power Systems and Clean Energy, 3 (2015), 1-13.
DOI: 10.1007/s40565-015-0101-7
Google Scholar
[48]
T. Adefarati, R. Bansal, Integration of renewable distributed generators into the distribution system: a review, IET Renewable Power Generation, 10 (2016), 873-884.
DOI: 10.1049/iet-rpg.2015.0378
Google Scholar
[49]
T. Adefarati, R. Bansal, Reliability assessment of distribution system with the integration of renewable distributed generation, Applied energy, 185 (2017) 158-171.
DOI: 10.1016/j.apenergy.2016.10.087
Google Scholar
[50]
T. Adefarati, R. Bansal, The impacts of PV-wind-diesel-electric storage hybrid system on the reliability of a power system, Energy Procedia, 105 (2017) 616-621.
DOI: 10.1016/j.egypro.2017.03.364
Google Scholar