[1]
S. D'Arco and J. A. Suul, Virtual synchronous machines — Classification of implementations and analysis of equivalence to droop controllers for microgrids,, in 2013 IEEE Grenoble Conference, 2013, p.1–7.
DOI: 10.1109/ptc.2013.6652456
Google Scholar
[2]
C. Andalib-Bin-Karim, X. Liang, and H. Zhang, Fuzzy-Secondary-Controller-Based Virtual Synchronous Generator Control Scheme for Interfacing Inverters of Renewable Distributed Generation in Microgrids,, IEEE Transactions on Industry Applications, vol. 54, no. 2, p.1047–1061, (2018).
DOI: 10.1109/tia.2017.2773432
Google Scholar
[3]
H. Wu et al., Small-Signal Modeling and Parameters Design for Virtual Synchronous Generators,, IEEE Transactions on Industrial Electronics, vol. 63, no. 7, p.4292–4303, (2016).
DOI: 10.1109/tie.2016.2543181
Google Scholar
[4]
Y. Chen, R. Hesse, D. Turschner, and H.-P. Beck, Dynamic Properties of the Virtual Synchronous Machine (VISMA).,.
DOI: 10.24084/repqj09.444
Google Scholar
[5]
H. Zhao, Q. Yang, and H. Zeng, Multi-loop virtual synchronous generator control of inverter-based DGs under microgrid dynamics,, IET Generation, Transmission & Distribution, vol. 11, no. 3, p.795–803, (2017).
DOI: 10.1049/iet-gtd.2016.0645
Google Scholar
[6]
Y. Hirase, K. Abe, K. Sugimoto, K. Sakimoto, H. Bevrani, and T. Ise, A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids,, Applied Energy, vol. 10, no. 16, p.699–710, (2017).
DOI: 10.1016/j.apenergy.2017.06.058
Google Scholar
[7]
J. Fang, Y. Tang, H. Li, and X. Li, A Battery/Ultracapacitor Hybrid Energy Storage System for Implementing the Power Management of Virtual Synchronous Generators,, IEEE Transactions on Power Electronics, vol. 33, no. 4, p.2820–2824, (2018).
DOI: 10.1109/tpel.2017.2759256
Google Scholar
[8]
H. Bevrani, T. Ise, and Y. Miura, Virtual synchronous generators: A survey and new perspectives,, International Journal of Electrical Power and Energy Systems, vol. 54, no. 10, p.244–254, (2014).
DOI: 10.1016/j.ijepes.2013.07.009
Google Scholar
[9]
P. Tielens and D. Van Hertem, The Relevance of Inertia in Power Systems,, Renewable and Sustainable Energy Reviews, vol. 55, p.999–1009, (2016).
DOI: 10.1016/j.rser.2015.11.016
Google Scholar
[10]
Y. Ma, W. Cao, L. Yang, F. F. Wang, and L. M. Tolbert, Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage,, IEEE Transactions on Industrial Electronics, vol. 64, no. 11, p.8821–8831, (2017).
DOI: 10.1109/tie.2017.2694347
Google Scholar
[11]
S. D'Arco, J. A. Suul, and O. B. Fosso, A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids,, Electric Power Systems Research, vol. 122, p.180–197, (2015).
DOI: 10.1016/j.epsr.2015.01.001
Google Scholar
[12]
T. Zheng, L. Chen, Y. Guo, and S. Mei, Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions,, IET Generation, Transmission & Distribution Research, vol. 12, no. 7, p.1621–1630, (2018).
DOI: 10.1049/iet-gtd.2017.0523
Google Scholar
[13]
K. Shi, W. Song, P. Xu, R. Liu, Z. Fang, and Y. Ji, Low-Voltage Ride-Through Control Strategy for a Virtual Synchronous Generator Based on Smooth Switching,, IEEE Access, vol. 6, no. 1, p.2703–2711, (2018).
DOI: 10.1109/access.2017.2784846
Google Scholar
[14]
P. C. Guerrero, Josep M and Chandorkar, Mukul and Lee, Tzung-Lin and Loh, Advanced Control Architectures for Intelligent MicroGrids, Part II Power Quality, Energy Storage, and AC/DC Microgrids,, IEEE Transactions on Industrial Electronics, vol. 60, no. 10, p.1254--1262, (2013).
DOI: 10.1109/tie.2012.2196889
Google Scholar
[15]
P. Piya, M. Ebrahimi, M. Karimi-Ghartemani, and S. A. Khajehoddin, Fault Ride-Through Capability of Voltage-Controlled Inverters,, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 65, no. 10, p.7933–7943, (2018).
DOI: 10.1109/tie.2018.2803765
Google Scholar
[16]
M. Mahdianpoor, A. Kiyoumarsi, M. Ataei, and R. A. Hooshmand, Robust implementation of distribution static compensator along with bridge type fault current limiter for fault ride through enhancement of fixed speed wind turbines,, IEEE Access, vol. 5, p.14490–14501, (2017).
DOI: 10.1109/access.2017.2696884
Google Scholar
[17]
T. Ise and H. Bevrani, Virtual synchronous generators and their applications in microgrids,, Integration of Distributed Energy Resources in Power Systems, p.282–294, Jan. (2016).
DOI: 10.1016/b978-0-12-803212-1.00012-x
Google Scholar
[18]
E. Buraimoh and I. E. Davidson, Comparative Analysis of the Fault Ride-Through Capabilities of the VSG Methods of Microgrid Inverter Control under Faults,, in Proceedings - 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA 2019, (2019).
DOI: 10.1109/robomech.2019.8704754
Google Scholar
[19]
J. Liu and T. Ise, Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids,, (2016).
Google Scholar
[20]
J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and Design, Fifth. Stamford, USA: Global Engineering Publisher, (2012).
Google Scholar
[21]
Y. Hirase, K. Sugimoto, K. Sakimoto, and T. Ise, Analysis of Resonance in Microgrids and Effects of System Frequency Stabilization Using a Virtual Synchronous Generator,, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 4, p.1287–1298, (2016).
DOI: 10.1109/jestpe.2016.2581818
Google Scholar
[22]
U. B. Tayab, M. A. Bin Roslan, L. J. Hwai, and M. Kashif, A review of droop control techniques for microgrid,, Renewable and Sustainable Energy Reviews, vol. 76, no. 5, p.717–727, (2017).
DOI: 10.1016/j.rser.2017.03.028
Google Scholar