[1]
Momoh JA, Zhu JZ. Improved interior point method for OPF problems. IEEE Trans Power Syst 1999; 14(3):1114–20.
DOI: 10.1109/59.780938
Google Scholar
[2]
B. Bentouati, S. Chettih, Djekidel, R. and El-sehiemy, R. A. An Efficient Chaotic Cuckoo Search Framework for Solving non-Convex Optimal Power Flow Problem, International Journal of Engineering Research in Africa. 33, 84–99 (2017).
DOI: 10.4028/www.scientific.net/jera.33.84
Google Scholar
[3]
B. Bentouati, S. Chettih, and El-sehiemy, R. A. A Chaotic Krill Herd Algorithm for Optimal Solution of the Economic Dispatch Problem, International Journal of Engineering Research in Africa. 31, 155–168 (2017).
DOI: 10.4028/www.scientific.net/jera.31.155
Google Scholar
[4]
B. Bentouati. L. Chaib and S. Chettih, A hybrid whale algorithm and pattern search technique for optimal power flow problem, 8th International Conference on Modelling, Identification and Control (ICMIC), Algiérs, (IEEE), pp.1048-1053 (2016).
DOI: 10.1109/icmic.2016.7804267
Google Scholar
[5]
P.K. Roy, C. Paul, Optimal power flow using krill herd algorithm, Int. Trans. Electr. Energy Syst. 25 (8) (2015) 1397–1419.
DOI: 10.1002/etep.1888
Google Scholar
[6]
M.R. Adaryani, A. Karami, Artificial bee colony algorithm for solving multi-objective optimal power flow problem, Int. J. Electr. Power Energy Syst.53 (2013) 219–230.
DOI: 10.1016/j.ijepes.2013.04.021
Google Scholar
[7]
H.R.E.H. Bouchekara, A.E. Chaib, M.A. Abido, R.A. El-Sehiemy, Optimal power flow using an improved colliding bodies optimization algorithm, Appl. Soft Comput. 42 (2016) 119–131.
DOI: 10.1016/j.asoc.2016.01.041
Google Scholar
[8]
K. Abaci, V. Yamacli, Differential search algorithm for solving multi-objective optimal power flow problem, Int. J. Electr. Power Energy Syst. 79 (2016) 1–10.
DOI: 10.1016/j.ijepes.2015.12.021
Google Scholar
[9]
A.M. Shaheen, R.A. El-Sehiemy, S.M. Farrag, Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm, IETGener. Transm. Distrib. (2016).
DOI: 10.1049/iet-gtd.2015.0892
Google Scholar
[10]
M. Ghasemi, S. Ghavidel, M. Gitizadeh, E. Akbari, An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow, Int. J. Electr. Power Energy Syst.65 (2015) 375–384.
DOI: 10.1016/j.ijepes.2014.10.027
Google Scholar
[11]
T. Niknam, M.R. Narimani, R. Azizipanah-Abarghooee, A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect, Energy Convers. Manage. 58 (2012) 197–206.
DOI: 10.1016/j.enconman.2012.01.017
Google Scholar
[12]
M.R. Narimani, R. Azizipanah-Abarghooee, B.Zoghdar-Moghadam-Shahrekohne, K. Gholami, A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type, Energy 49 (2013)119–136.
DOI: 10.1016/j.energy.2012.09.031
Google Scholar
[13]
Rao SB, Vaisakh K. Application of ACSA for solving multi-objective optimal power flow problem with load uncertainty. IEEE international conference on emerging trends in computing, communication and nanotechnology; 2013. P.764–71.
DOI: 10.1109/ice-ccn.2013.6528607
Google Scholar
[14]
Hazra J, Sinha AK. Environmental constrained economic dispatch using bacterial foraging optimization. IEEE Power India Conf 2008:1–6.
DOI: 10.1109/icpst.2008.4745330
Google Scholar
[15]
M. Ghasemi, S. Ghavidel, S. Rahmani, A. Roosta, H. Falah, A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions, Eng. Appl. Artif. Intell. 29 (2014) 54–69.
DOI: 10.1016/j.engappai.2013.11.003
Google Scholar
[16]
Mohamed, A. A. A., Mohamed, Y. S., El-Gaafary, A. A., and Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 142, 190-206.
DOI: 10.1016/j.epsr.2016.09.025
Google Scholar
[17]
Chaib, A. E., Bouchekara, H. R. E. H., Mehasni, R., and Abido, M. A. (2016). Optimal power flow with emission and non - smooth cost functions using backtracking search optimization algorithm. International Journal of Electrical Power and Energy Systems, 81, 64-77.
DOI: 10.1016/j.ijepes.2016.02.004
Google Scholar
[18]
A. Bhattacharya and PK. Chattopadhyay, Application of biogeography-based optimization to solve different optimal power flow problems, IET Generation, Transmission and Distribution, 5(1), 70–80, (2011).
DOI: 10.1049/iet-gtd.2010.0237
Google Scholar
[19]
R. Roy and H.T. Jadhav, Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm, Electrical Power and Energy Systems, 64, 562–578, (2015).
DOI: 10.1016/j.ijepes.2014.07.010
Google Scholar
[20]
Gandomi, A. H., and Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.
DOI: 10.1016/j.cnsns.2012.05.010
Google Scholar
[21]
Yang, X. S. (2010b). Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-inspired Computation, 2(2), 78–84.
DOI: 10.1504/IJBIC.2010.032124
Google Scholar
[22]
Yang, X.-S., Sadat Hosseini, S. S., and Gandomi, A. H. (2012). Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing, 12(3), 1180–1186.
DOI: 10.1016/j.asoc.2011.09.017
Google Scholar
[23]
Wang G-G, Gandomi, A. H., Alavi, A. H. and, Yong, (2014) A Hybrid Meta-Heuristic Method Based on Firefly Algorithm and Krill Herd.
Google Scholar
[24]
Basu, M., Multi-objective optimal power flow with FACTS,, Energy Convers. Manag, Vol. 52, pp. (2011): 903–910.
DOI: 10.1016/j.enconman.2010.08.017
Google Scholar
[25]
H. R. E. H. Bouchekara, Chaib, A. E., and Abido, M. A. Optimal power flow using GA with a new multi-parent crossover considering: prohibited zones, valve-point effect, multi-fuels and emission. Electr Eng (2016).
DOI: 10.1007/s00202-016-0488-9
Google Scholar
[26]
L. Dilip, R. Bhesdadiya, P. Jangir, Optimal Power Flow Problem Solution Using Multi-objective Grey Wolf Optimizer Algorithm, Springer Nature Singapore, Pte. Ltd. (2018).
DOI: 10.1007/978-981-10-5523-2_18
Google Scholar
[27]
M. Ghasemi, S. Ghavidel, M.M. Ghanbarian, M. Gitizadeh, A.A. Vahed. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy (2014) 1-14.
DOI: 10.1016/j.energy.2014.10.007
Google Scholar
[28]
G. Chen, X. Yi, Z. Zhang, H. Wang. Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems. Applied Soft Computing. (2018).
DOI: 10.1016/j.asoc.2018.04.006
Google Scholar
[29]
Kumar, A. R., and Premalatha, L. (2015). Optimal power flow for a deregulated power system using adaptive real coded biogeography-based optimization. International Journal of Electrical Power and Energy Systems, 73, 393-399.
DOI: 10.1016/j.ijepes.2015.05.011
Google Scholar
[30]
Partha P. Biswas, P.N. Suganthan, R. Mallipeddi, Gehan A.J. Amaratunga, Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques, Elsevier, Engineering Applications of Artificial Intelligence 68 (2018), p.81–100.
DOI: 10.1016/j.engappai.2017.10.019
Google Scholar
[31]
Bachir Bentouati, Saliha Chettih, Pradeep Jangir, Indrajit N. Trivedi, A solution to the optimal power flow using multi-verse optimizer, Journal of Electrical Systems, 2016, pp.716-733.
Google Scholar