Petro-Mineralogical and Geochemical Characterization of the Banded Irons Formations BIFs of the Nimba Range and its Western Extension (Nimba Region)

Article Preview

Abstract:

The Nimba Range and its western extension are located in the Nimba region on the borders of the Republic of Guinea, Liberia and Côte d'Ivoire. It is a mountainous region made up of metavolcanic and metasedimentary rocks. Metavolcanic rocks are gneisses, granites, amphibolites and quartzites, which constitute the lower part of Archean age. The upper part consists of Proterozoic rocks of metasedimentary origin. It contains important deposits of itabirites which occupy the top of the mountains and hills of the region. The petrographic study of the banded iron formations reveals the existence of silicate banded iron formations (SIF) and oxidized banded iron formations (OIF). The results of the scanning electron microscope (SEM) and metallogenic analyzes show the presence of iron minerals (magnetites, hematites, pyrites, goethites, martites and siderites). These analyzes also reveal the presence of the metamorphic index minerals associated with the banded iron formations, hence the existence of several types of ferriferous formations (silicate (SIF) and oxidized (OIF) banded iron formations). Overall, there is an increase in the degree of regional metamorphism from east to west of the Nimba region. The geochemical analysis of the banded iron formations reveals that with the exception of Na2O, all the major elements have a negative linear correlation although dispersed with Fe2O3. This correlation is explained by a decrease in quartz, garnet, micas (muscovite and biotite), amphibole, pyroxene, plagioclase, titanium and phosphorus contents. Conversely, there is an increase in iron ore content: magnetites, pyrites, hematites, goethite. But the alkali content remains constant in these banded iron formations. Then, the lower the Fe2O3 content, the higher the FeO content, while those of SiO2 and Al2O3 are constant in all of these formations in the Nimba region except in the chlorite banded iron formation where both are anticorelated. Finally, the ratio SiO2 / Fe2O3 vs MgO + CaO + MnO / Fe2O3 of the banded iron formations of the Nimba region compared to the same formations of the whole world allows to give them Proterozoic age. Some itabirites have high levels of magnetite, hematite, and goethite (same feature as itabirites of Lac supérieur and Pic de fon) and only chlorite itabirite has a low to medium Mg-Si-BIF content.

You might also be interested in these eBooks

Info:

Pages:

99-134

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.J. Rouxel, A. Bekker, and K.J. Edwards, Iron isotope constraints on the Archeanand Paleoproterozoic Ocean redox state, Science, Vol.307, 2005, pp.1088-1091.

DOI: 10.1126/science.1105692

Google Scholar

[2] A. Bekker, N. J. Planavsky, B. Krapez, B. Rasmussen, A. Hofmann, J. F. Slack, O. J. Rouxel, and K. O. Konhauser, Reference Module in Earth Systems and Environmental Sciences, Treatise on Geochemistry (2nd Edition), Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry, 9, 2014, pp.561-628.

DOI: 10.1016/b978-0-08-095975-7.00719-1

Google Scholar

[3] A.L. Sessions, D.M. Doughty, P.V. Welander, R.E. Summons, and D.K. Newman, The continuing puzzle of the Great Oxidation Event, Current Biology, Vol.19, 2009, pp.567-574.

DOI: 10.1016/j.cub.2009.05.054

Google Scholar

[4] ONU (10/07/2017) PopulationData.net. [Online]. Available: https://www.populationdata.net/cartes/liberia-2/, [Accessed 04/07/2018].

Google Scholar

[5] M. Lamotte, Réserve de biosphere et site du patrimoine mondial (Guinée et Côte d'Ivoire), l'Organisation des Nations Unies pour l'éducation, la science et la culture,7, place de Fontenoy, 75352 Paris 07 SP, Tech. 1998, Rep 559/99.

DOI: 10.7202/1061022ar

Google Scholar

[6] M. Billa, J.L. Feybess, G. Bronner, C. Lerouge, J.P. Milési, S. Traoré, and S Diaby, Les formations à quartzites rubanés ferrugineux des Monts Nimba et Simandou : des unitées empilées tectoniquement, sur un « soubassement » plutoniqueArchéen (craton de Kénéma-Man), lors de l'orogène Eburnéen, C.R Acad. Sci. Paris, Sciences de la terre et de planètes / Earth & Planetary Sciences, Vol.329, 1999, pp.287-294.

DOI: 10.1016/s1251-8050(99)80248-1

Google Scholar

[7] C.Guerrot, Résultats d'études sur les Monts Nimba, note BRGM, SMN/ANA/ISO 98, 232, 1998, p.17.

Google Scholar

[8] C.Guerrot, Résultats d'études sur les Monts Nimba, note BRGM, DR/PCI 1.86/96 NL, 1996, p.10.

Google Scholar

[9] M.S.M. Conté, A. Boushaba, and A. Moukadiri, Petro-Geochemical and Statistic Studies of the Nimba Region in the Republic of Guinea, International Journal of Multidisciplinary and Current Research, Vol.6, 2018, pp.256-272.

DOI: 10.14741/ijmcr/v.6.2.2

Google Scholar

[10] J.W. Berge, A proposed structural and stratigraphic interpretation of the Nimba- Gbabm Rigde area .Liberia, Geol. Mining Metallurgy Soc, Liberia Bull, Vol . 3, 1968, pp.28-47.

Google Scholar

[11] A. Obermuller, and M. Roques, Discordance de la Serie antecambriene du Simandou sur les Gneiss de Guinée (A.O.F.), C. R. Academic Sciences, Paris 223, p.1163–1164, (1946).

Google Scholar

[12] J. Dorr, N. Van, and A. L. M. Barbosa, Geology and ore deposits of the itabira district, Minas Gerais, Brazil, U. S. Geol. Survey prof. 341c, 1963, 110p.

DOI: 10.3133/pp341c

Google Scholar

[13] V. I. Mamedov, Y.V. Bouffev, and Y.A. Nikitine, Banque de données sur les gisements et indices des minéraux utiles, Volume 2, Géoprospects Ltd, Conakry-Moscou., 2010, 266.p.

Google Scholar

[14] J.W. Berge, Géology, Géochemistry and Origin of the Nimba Itabirite And Associated Rocks, Nimba Country, Liberia, Economic Geology, Vol.69, 1974, pp.80-92.

DOI: 10.2113/gsecongeo.69.1.80

Google Scholar

[15] D.R. Edifor, ArcelorMittal Liberia Mining, Yekepa Project Overview, A presentation prepared for ArcelorMittal Liberia by the Exploration Geology Department, Presentation Slides. 28 October 2009, Tech. Rep. 12-23.

Google Scholar

[16] R. M. Wallace, Geology and Mineral resources of the Pico de Itabirito district, Minas Gerias, Brazil, U. S. Geolgical Survey Profesionnal Paper 341-F, 1965, p.68.

DOI: 10.3133/pp341f

Google Scholar

[17] R. O. Castle, and D. H. Lindsley, An exsolution silica-pump model for the origin of myrmekite, Contributions to Mineralogy and Petrology, 1993, pp.115-158.

DOI: 10.1007/bf00712978

Google Scholar

[18] K. Theunissen, J. L. Lenoir, J. P. Liegeois, D. Delvaux, and A. Mruma, Empreinte Pan-Africaine majeure dans la chaîne ubendienne de Tanzanie sud-occidentale : géochronologie U-Pb sur zircon et contexte structural. C. R. Acad. Sci. Paris, t. 314, Serie II, 1992, pp.1355-1362.

Google Scholar

[19] M. Engi, A. K. Cheburkin, and V. Koppel, Nondestructive chemical dating of young monazite using XRF: 1. Design of a mini-probe, age data for samples from the Central Alps, and comparison to U–Pb (TIMS) data, Chemical Geology, Vol. 191, issues 1-3, 2002, pp.225-241.

DOI: 10.1016/s0009-2541(02)00158-4

Google Scholar

[20] J. A. Halpin, R. W. White, G. L. Clarke, and D. E Kelsey, The Proterozoic P–T–t Evolution of the Kemp Land Coast, East Antarctica; constraints from Si-saturated and Si-undersaturated metapelites, Journal of Petrology 48(7), 2007, pp.1321-1349.

DOI: 10.1093/petrology/egm020

Google Scholar

[21] R. L. Sanchez, and D. Gebauer, Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust. U–Pb sensitive high-resolution ion microprobe dating of zircon, Vol. 316, Issues 1-2, 2000, pp.19-44.

DOI: 10.1016/s0040-1951(99)00256-5

Google Scholar

[22] O. S. Ait, Modalités de mise en place d'un pluton granitique et ses relations avec la déformation régionale : l'exemple du granite hercynien d'Oulmès (Maroc central), Thèse, Université de Rennes, France, 1986, p.224.

Google Scholar

[23] D.L. Whitney, and B.W. Evans, Abbreviations for names of rock-forming minerals, American Mineralogist, Vol 95, 2010, p.185–187.

DOI: 10.2138/am.2010.3371

Google Scholar

[24] S. R. Taylor, and S. M. Mclennan, The geochemical evolution of the continental crust, Rev. Geophys., 33, 1995, pp.241-265.

DOI: 10.1029/95rg00262

Google Scholar

[25] T. Angerer, S.G. Hagemann, and L.V. Danyushevsky, Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing greenstone belt, Western Australia, Economic Geology, Vol. 107, 2012, p.599–644.

DOI: 10.2113/econgeo.107.4.599

Google Scholar

[26] K. Misra, Understanding Mineral Deposits, Kluwer Academic Publishers, 1999, p.845.

Google Scholar

[27] A. Bekker, J.F. Slack, N. Planasvsky, B. Krapež, A. Hofmann, K.O. Konhauser, and O. Rouxel, Iron-Formation: The Sedimentary Product of a Complex Interplay among Mantle. Tectonic. Oceanic. and Biospheric Processes, Economic Geology, Vol. 105, 2010, pp.467-508.

DOI: 10.2113/gsecongeo.105.3.467

Google Scholar

[28] M. Jebrak, and E. Marcoux, Géologie des ressources minérales, Ministère des Ressources Naturelles et de la Faune, Québec, 2008, p.667.

DOI: 10.4095/223369

Google Scholar

[29] H. S. Washington, Deccan traps and other plateau basalts, Bull. Geol. Soc. America, Vol. 33, 1922, pp.765-804.

DOI: 10.1130/gsab-33-765

Google Scholar

[30] H. R. Jr. Nanz, Chemical composition of Precambrian slates with notes on the geological evalution of lutites, Jour. Geology, Vol. 65, 1953, pp.51-64.

DOI: 10.1086/626036

Google Scholar

[31] B. Bessoles, Géologie de l'Afrique : le craton ouest-africain, Mem. BRGM, 88, 1977, 403p.

DOI: 10.1016/b978-0-08-030277-5.50007-9

Google Scholar

[32] J. P. Milesi, J. L. Feybesse, P. Ledru, A. Dommanget, M. -F. Ouedraogo, E. Marcoux, A. Prost, C. Vinchon, J. P. Sylvain, V. Johan, M. Tegyey, J. YCalvez, and P. Lagny, Minéralisations aurifères de I Afrique de I'ouest, leurs relations avec l,évolution litho-structurale au Protérozoïque inférieur, Carte géologique au l/2 000 000, Chron. rech. min. Fr., 497, 1989, pp.3-98.

Google Scholar

[33] L, A, Haskin, T. R, Wildeman, and M. A. Haskin, An accurate procedure for the determination of the rare earths by neutron activation, Journal of Radioanalytical Chemistry, 1, 1968, pp.337-348.

DOI: 10.1007/bf02513689

Google Scholar

[34] A Doody, Petrology of banded iron formation and phyllite in the standard creek contact aureole, southern gravelly mountains. 19th Annual Keck Symposium (http://keck.wooster.edu/publications), 2006, pp.117-182.

Google Scholar

[35] P. Thomas. and O. Dequinoey (10/10/2011) Les fers rubanés (Banded Iron Formation) de l'Archéen de Barberton, groupe de Fig Tree (-3,26 à -3,22 Ga), Afrique du Sud. [Online]. Available: http://planet-terre.ens-lyon.fr/image-de-la-semaine/Img364-2011-10-10.xml [Accessed 02/08/2018].

Google Scholar

[36] R. Ghosh, and T. Kumar Baidya, Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield, Journal of Asian Earth Sciences, Volume 150, 2017, pp.25-44.

DOI: 10.1016/j.jseaes.2017.10.003

Google Scholar

[37] H. Nozaki, N. Ohta, H. Takano, and M. M. Watanabe, Re-examination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL, gene sequences, J. Phycol, Vol. 35. 1999, pp.104-112.

DOI: 10.1046/j.1529-8817.1999.3510104.x

Google Scholar

[38] E. R. L. Sholkovitz, W. M. Anding, and B. L. Lewis, Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater, Geochimica et Cosmochimica Acta, v. 58, 1994, pp.1567-1579.

DOI: 10.1016/0016-7037(94)90559-2

Google Scholar

[39] J. Mesplède and J. Randon, 100 manipulations de chimie générale et analytique Editions Bréal, 2004, 249 pages.

Google Scholar

[40] C. Wang, K. O. Konhauser, and L. Zhang, Depositional Environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China, Economic Geology, v.110, 2015, pp.1515-1539.

DOI: 10.2113/econgeo.110.6.1515

Google Scholar

[41] N. J. Beukes, and J. Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary Reviews in Economic Geology, v. 15, 2008, p.5–47.

DOI: 10.5382/rev.15.01

Google Scholar

[42] H. Ohmoto, Non-redox transformations of magnetite-hematite in hydrothermal systems, Economic Geology, v. 98, 2003, p.157–161.

DOI: 10.2113/gsecongeo.98.1.157

Google Scholar

[43] A. Heimann, C. M. Johnson, B. L. Beard, J. W. Valley, E. E. Roden, M. J. Spicuzza, and N. J. Beukes, Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments, Earth and Planetary Science Letters, v. 294, 2010, p.8–18.

DOI: 10.1016/j.epsl.2010.02.015

Google Scholar

[44] K. O. Konhauser, T. Hamade, R. C. Morris, F. G. Ferris, G. Southam, R. Raiswell, and D. Canfield, Could bacteria have formed the Precambrian banded iron formations, Geology, v. 30, 2002, p.1079−1082.

DOI: 10.1130/0091-7613(2002)030<1079:cbhftp>2.0.co;2

Google Scholar

[45] A. Kappler, C. Pasquero, K. O. Konhauser, D. K. Newman, Deposition of banded iron formation by anoxygenic phototrophic Fe (II)-oxidizing bacteria, Geology, v. 33, 2005, p.865–868.

DOI: 10.1130/g21658.1

Google Scholar

[46] J. F. Kasting, J.F. When methane made climate, Scientific American, 291, 2004, p.78–85.

DOI: 10.1038/scientificamerican0704-78

Google Scholar

[47] J. F. Kasting, and D. Catling, Evolution of a habitable planet, Annual Review of Astronomy and Astrophysics, 41, 2003, p.429–463.

DOI: 10.1146/annurev.astro.41.071601.170049

Google Scholar

[48] J. F. Kasting, The rise of atmospheric oxygen, Science, 293, 2001, p.819–820.

Google Scholar

[49] A. A. Pavlov, and J. J Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere, Astrobiology, 2, 2002, p.27–410.

DOI: 10.1089/153110702753621321

Google Scholar

[50] C. Klein, Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist, Volume 90, 2005, p.1473–1499.

DOI: 10.2138/am.2005.1871

Google Scholar