[1]
O.J. Rouxel, A. Bekker, and K.J. Edwards, Iron isotope constraints on the Archeanand Paleoproterozoic Ocean redox state, Science, Vol.307, 2005, pp.1088-1091.
DOI: 10.1126/science.1105692
Google Scholar
[2]
A. Bekker, N. J. Planavsky, B. Krapez, B. Rasmussen, A. Hofmann, J. F. Slack, O. J. Rouxel, and K. O. Konhauser, Reference Module in Earth Systems and Environmental Sciences, Treatise on Geochemistry (2nd Edition), Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry, 9, 2014, pp.561-628.
DOI: 10.1016/b978-0-08-095975-7.00719-1
Google Scholar
[3]
A.L. Sessions, D.M. Doughty, P.V. Welander, R.E. Summons, and D.K. Newman, The continuing puzzle of the Great Oxidation Event, Current Biology, Vol.19, 2009, pp.567-574.
DOI: 10.1016/j.cub.2009.05.054
Google Scholar
[4]
ONU (10/07/2017) PopulationData.net. [Online]. Available: https://www.populationdata.net/cartes/liberia-2/, [Accessed 04/07/2018].
Google Scholar
[5]
M. Lamotte, Réserve de biosphere et site du patrimoine mondial (Guinée et Côte d'Ivoire), l'Organisation des Nations Unies pour l'éducation, la science et la culture,7, place de Fontenoy, 75352 Paris 07 SP, Tech. 1998, Rep 559/99.
DOI: 10.7202/1061022ar
Google Scholar
[6]
M. Billa, J.L. Feybess, G. Bronner, C. Lerouge, J.P. Milési, S. Traoré, and S Diaby, Les formations à quartzites rubanés ferrugineux des Monts Nimba et Simandou : des unitées empilées tectoniquement, sur un « soubassement » plutoniqueArchéen (craton de Kénéma-Man), lors de l'orogène Eburnéen, C.R Acad. Sci. Paris, Sciences de la terre et de planètes / Earth & Planetary Sciences, Vol.329, 1999, pp.287-294.
DOI: 10.1016/s1251-8050(99)80248-1
Google Scholar
[7]
C.Guerrot, Résultats d'études sur les Monts Nimba, note BRGM, SMN/ANA/ISO 98, 232, 1998, p.17.
Google Scholar
[8]
C.Guerrot, Résultats d'études sur les Monts Nimba, note BRGM, DR/PCI 1.86/96 NL, 1996, p.10.
Google Scholar
[9]
M.S.M. Conté, A. Boushaba, and A. Moukadiri, Petro-Geochemical and Statistic Studies of the Nimba Region in the Republic of Guinea, International Journal of Multidisciplinary and Current Research, Vol.6, 2018, pp.256-272.
DOI: 10.14741/ijmcr/v.6.2.2
Google Scholar
[10]
J.W. Berge, A proposed structural and stratigraphic interpretation of the Nimba- Gbabm Rigde area .Liberia, Geol. Mining Metallurgy Soc, Liberia Bull, Vol . 3, 1968, pp.28-47.
Google Scholar
[11]
A. Obermuller, and M. Roques, Discordance de la Serie antecambriene du Simandou sur les Gneiss de Guinée (A.O.F.), C. R. Academic Sciences, Paris 223, p.1163–1164, (1946).
Google Scholar
[12]
J. Dorr, N. Van, and A. L. M. Barbosa, Geology and ore deposits of the itabira district, Minas Gerais, Brazil, U. S. Geol. Survey prof. 341c, 1963, 110p.
DOI: 10.3133/pp341c
Google Scholar
[13]
V. I. Mamedov, Y.V. Bouffev, and Y.A. Nikitine, Banque de données sur les gisements et indices des minéraux utiles, Volume 2, Géoprospects Ltd, Conakry-Moscou., 2010, 266.p.
Google Scholar
[14]
J.W. Berge, Géology, Géochemistry and Origin of the Nimba Itabirite And Associated Rocks, Nimba Country, Liberia, Economic Geology, Vol.69, 1974, pp.80-92.
DOI: 10.2113/gsecongeo.69.1.80
Google Scholar
[15]
D.R. Edifor, ArcelorMittal Liberia Mining, Yekepa Project Overview, A presentation prepared for ArcelorMittal Liberia by the Exploration Geology Department, Presentation Slides. 28 October 2009, Tech. Rep. 12-23.
Google Scholar
[16]
R. M. Wallace, Geology and Mineral resources of the Pico de Itabirito district, Minas Gerias, Brazil, U. S. Geolgical Survey Profesionnal Paper 341-F, 1965, p.68.
DOI: 10.3133/pp341f
Google Scholar
[17]
R. O. Castle, and D. H. Lindsley, An exsolution silica-pump model for the origin of myrmekite, Contributions to Mineralogy and Petrology, 1993, pp.115-158.
DOI: 10.1007/bf00712978
Google Scholar
[18]
K. Theunissen, J. L. Lenoir, J. P. Liegeois, D. Delvaux, and A. Mruma, Empreinte Pan-Africaine majeure dans la chaîne ubendienne de Tanzanie sud-occidentale : géochronologie U-Pb sur zircon et contexte structural. C. R. Acad. Sci. Paris, t. 314, Serie II, 1992, pp.1355-1362.
Google Scholar
[19]
M. Engi, A. K. Cheburkin, and V. Koppel, Nondestructive chemical dating of young monazite using XRF: 1. Design of a mini-probe, age data for samples from the Central Alps, and comparison to U–Pb (TIMS) data, Chemical Geology, Vol. 191, issues 1-3, 2002, pp.225-241.
DOI: 10.1016/s0009-2541(02)00158-4
Google Scholar
[20]
J. A. Halpin, R. W. White, G. L. Clarke, and D. E Kelsey, The Proterozoic P–T–t Evolution of the Kemp Land Coast, East Antarctica; constraints from Si-saturated and Si-undersaturated metapelites, Journal of Petrology 48(7), 2007, pp.1321-1349.
DOI: 10.1093/petrology/egm020
Google Scholar
[21]
R. L. Sanchez, and D. Gebauer, Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust. U–Pb sensitive high-resolution ion microprobe dating of zircon, Vol. 316, Issues 1-2, 2000, pp.19-44.
DOI: 10.1016/s0040-1951(99)00256-5
Google Scholar
[22]
O. S. Ait, Modalités de mise en place d'un pluton granitique et ses relations avec la déformation régionale : l'exemple du granite hercynien d'Oulmès (Maroc central), Thèse, Université de Rennes, France, 1986, p.224.
Google Scholar
[23]
D.L. Whitney, and B.W. Evans, Abbreviations for names of rock-forming minerals, American Mineralogist, Vol 95, 2010, p.185–187.
DOI: 10.2138/am.2010.3371
Google Scholar
[24]
S. R. Taylor, and S. M. Mclennan, The geochemical evolution of the continental crust, Rev. Geophys., 33, 1995, pp.241-265.
DOI: 10.1029/95rg00262
Google Scholar
[25]
T. Angerer, S.G. Hagemann, and L.V. Danyushevsky, Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing greenstone belt, Western Australia, Economic Geology, Vol. 107, 2012, p.599–644.
DOI: 10.2113/econgeo.107.4.599
Google Scholar
[26]
K. Misra, Understanding Mineral Deposits, Kluwer Academic Publishers, 1999, p.845.
Google Scholar
[27]
A. Bekker, J.F. Slack, N. Planasvsky, B. Krapež, A. Hofmann, K.O. Konhauser, and O. Rouxel, Iron-Formation: The Sedimentary Product of a Complex Interplay among Mantle. Tectonic. Oceanic. and Biospheric Processes, Economic Geology, Vol. 105, 2010, pp.467-508.
DOI: 10.2113/gsecongeo.105.3.467
Google Scholar
[28]
M. Jebrak, and E. Marcoux, Géologie des ressources minérales, Ministère des Ressources Naturelles et de la Faune, Québec, 2008, p.667.
DOI: 10.4095/223369
Google Scholar
[29]
H. S. Washington, Deccan traps and other plateau basalts, Bull. Geol. Soc. America, Vol. 33, 1922, pp.765-804.
DOI: 10.1130/gsab-33-765
Google Scholar
[30]
H. R. Jr. Nanz, Chemical composition of Precambrian slates with notes on the geological evalution of lutites, Jour. Geology, Vol. 65, 1953, pp.51-64.
DOI: 10.1086/626036
Google Scholar
[31]
B. Bessoles, Géologie de l'Afrique : le craton ouest-africain, Mem. BRGM, 88, 1977, 403p.
DOI: 10.1016/b978-0-08-030277-5.50007-9
Google Scholar
[32]
J. P. Milesi, J. L. Feybesse, P. Ledru, A. Dommanget, M. -F. Ouedraogo, E. Marcoux, A. Prost, C. Vinchon, J. P. Sylvain, V. Johan, M. Tegyey, J. YCalvez, and P. Lagny, Minéralisations aurifères de I Afrique de I'ouest, leurs relations avec l,évolution litho-structurale au Protérozoïque inférieur, Carte géologique au l/2 000 000, Chron. rech. min. Fr., 497, 1989, pp.3-98.
Google Scholar
[33]
L, A, Haskin, T. R, Wildeman, and M. A. Haskin, An accurate procedure for the determination of the rare earths by neutron activation, Journal of Radioanalytical Chemistry, 1, 1968, pp.337-348.
DOI: 10.1007/bf02513689
Google Scholar
[34]
A Doody, Petrology of banded iron formation and phyllite in the standard creek contact aureole, southern gravelly mountains. 19th Annual Keck Symposium (http://keck.wooster.edu/publications), 2006, pp.117-182.
Google Scholar
[35]
P. Thomas. and O. Dequinoey (10/10/2011) Les fers rubanés (Banded Iron Formation) de l'Archéen de Barberton, groupe de Fig Tree (-3,26 à -3,22 Ga), Afrique du Sud. [Online]. Available: http://planet-terre.ens-lyon.fr/image-de-la-semaine/Img364-2011-10-10.xml [Accessed 02/08/2018].
Google Scholar
[36]
R. Ghosh, and T. Kumar Baidya, Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield, Journal of Asian Earth Sciences, Volume 150, 2017, pp.25-44.
DOI: 10.1016/j.jseaes.2017.10.003
Google Scholar
[37]
H. Nozaki, N. Ohta, H. Takano, and M. M. Watanabe, Re-examination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL, gene sequences, J. Phycol, Vol. 35. 1999, pp.104-112.
DOI: 10.1046/j.1529-8817.1999.3510104.x
Google Scholar
[38]
E. R. L. Sholkovitz, W. M. Anding, and B. L. Lewis, Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater, Geochimica et Cosmochimica Acta, v. 58, 1994, pp.1567-1579.
DOI: 10.1016/0016-7037(94)90559-2
Google Scholar
[39]
J. Mesplède and J. Randon, 100 manipulations de chimie générale et analytique Editions Bréal, 2004, 249 pages.
Google Scholar
[40]
C. Wang, K. O. Konhauser, and L. Zhang, Depositional Environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China, Economic Geology, v.110, 2015, pp.1515-1539.
DOI: 10.2113/econgeo.110.6.1515
Google Scholar
[41]
N. J. Beukes, and J. Gutzmer, J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary Reviews in Economic Geology, v. 15, 2008, p.5–47.
DOI: 10.5382/rev.15.01
Google Scholar
[42]
H. Ohmoto, Non-redox transformations of magnetite-hematite in hydrothermal systems, Economic Geology, v. 98, 2003, p.157–161.
DOI: 10.2113/gsecongeo.98.1.157
Google Scholar
[43]
A. Heimann, C. M. Johnson, B. L. Beard, J. W. Valley, E. E. Roden, M. J. Spicuzza, and N. J. Beukes, Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments, Earth and Planetary Science Letters, v. 294, 2010, p.8–18.
DOI: 10.1016/j.epsl.2010.02.015
Google Scholar
[44]
K. O. Konhauser, T. Hamade, R. C. Morris, F. G. Ferris, G. Southam, R. Raiswell, and D. Canfield, Could bacteria have formed the Precambrian banded iron formations, Geology, v. 30, 2002, p.1079−1082.
DOI: 10.1130/0091-7613(2002)030<1079:cbhftp>2.0.co;2
Google Scholar
[45]
A. Kappler, C. Pasquero, K. O. Konhauser, D. K. Newman, Deposition of banded iron formation by anoxygenic phototrophic Fe (II)-oxidizing bacteria, Geology, v. 33, 2005, p.865–868.
DOI: 10.1130/g21658.1
Google Scholar
[46]
J. F. Kasting, J.F. When methane made climate, Scientific American, 291, 2004, p.78–85.
DOI: 10.1038/scientificamerican0704-78
Google Scholar
[47]
J. F. Kasting, and D. Catling, Evolution of a habitable planet, Annual Review of Astronomy and Astrophysics, 41, 2003, p.429–463.
DOI: 10.1146/annurev.astro.41.071601.170049
Google Scholar
[48]
J. F. Kasting, The rise of atmospheric oxygen, Science, 293, 2001, p.819–820.
Google Scholar
[49]
A. A. Pavlov, and J. J Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere, Astrobiology, 2, 2002, p.27–410.
DOI: 10.1089/153110702753621321
Google Scholar
[50]
C. Klein, Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist, Volume 90, 2005, p.1473–1499.
DOI: 10.2138/am.2005.1871
Google Scholar