The Optimization of Ball Milling Method in Preparation of Phenolic/Functionalized Multi-Wall Carbon Nanotube Composite and Comparison with Wet Method

Article Preview

Abstract:

This paper focuses on the optimization of ball milling as a dry mixing method and comparison with the wet method for manufacturing phenolic/multi-wall carbon nanotube (MWCNT) composites. In the ball milling, the effect of milling-time on the properties of composites containing functionalized and pristine MWCNT in two MWCNT concentrations has been investigated. At first in the wet method, polymer was dissolved in acetone and then mixed with MWCNT by sonication method. Also, the effect of functionalization by use of acid nitric refluxing was considered. The material properties were characterized by the DSC, FTIR, Raman, electrical conductivity, SEM, TEM and bending strength analyses. The results of electrical conductivity and bending tests showed that the best time for ball milling is about 2 hrs. In addition, functionalization had a positive effect on bending strength and a negative effect on electrical conductivity. The results of DSC indicated that the composite manufactured by ball milling method resulted in more thermal stability than that manufactured by the wet method. It was also shown that the functionalization increases the thermal stability; however, the increasing MWCNT concentration leads to agglomeration, thereby decreasing the thermal stability.

You might also be interested in these eBooks

Info:

Pages:

16-29

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Yogeswaran and S.M. Chen, Multi-walled carbon nanotubes with poly (methylene blue) composite fi‏{TTP}-1279 lm for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sensors and Actuators B 130 (2008).

DOI: 10.1016/j.snb.2007.10.040

Google Scholar

[2] Y. Geng, M.Y. Liu, J. Li, X.M. Shi and J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites: Part A 39 (2008) 1876–1883.

DOI: 10.1016/j.compositesa.2008.09.009

Google Scholar

[3] S. Wanga,R. ‏ Liang, B. Wang and C. Zhang, Dispersion and thermal conductivity of carbon nanotube composites. J Carbon 47 (2009) 53 –57.

DOI: 10.1016/j.carbon.2008.08.024

Google Scholar

[4] F.H. Gojny, M.H.G. Wichmann, B. Fiedler and K. Schulte, Infl‏{TTP}-1278 uence of diff‏{TTP}-1280 erent carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65 (2005).

DOI: 10.1016/j.compscitech.2005.04.021

Google Scholar

[5] G. Centi, M. Gangeri, M. Fiorello, S. Perathoner, J. Amadou, D Bégin, M.J. Ledoux, C. Pham-Huu, M.E. Schuster, and D.S. Su, The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell. Catalysis Today 147 (2009).

DOI: 10.1016/j.cattod.2009.07.080

Google Scholar

[6] D.K. Lim, T. Shibayanagi and A.P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Composites Science and Technology 66 (2006) 1995–(2002).

DOI: 10.1016/j.msea.2008.11.067

Google Scholar

[7] H. Ma, J. Zeng, M. L. Realff‏{TTP}-1280 , S. Kumar and D. A. Schiraldi, Processing, structure, and properties of fi‏{TTP}-1279 bers from polyester/carbon nanofi‏{TTP}-1279 ber composites. Composites Science and Technology 63 (2003) 1617–1628.

DOI: 10.1016/s0266-3538(03)00071-x

Google Scholar

[8] P.C. Ma, N.A. Siddiqui, G. Marom and J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A 41 (2010) 1345–1367.

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[9] L. Bokobza, Multi wall carbon nanotube elastomeric composites: A review. Polymer 48 (2007) 4907-4920.

DOI: 10.1016/j.polymer.2007.06.046

Google Scholar

[10] L. Lu, Z. Zhou, Y. Zhang, S. Wang and Y. Zhang, Reinforcement of styrene–butadiene–styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. J Carbon 45 (2007) 2621–2627.

DOI: 10.1016/j.carbon.2007.08.025

Google Scholar

[11] B. Krause, P. Pötschke and L. Häußler, Infl‏{TTP}-1278 uence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology 69 (2009) 1505–1515.

DOI: 10.1016/j.compscitech.2008.07.007

Google Scholar

[12] P.C. Ma, J.K. Kim and B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology 67 (2007) 2965–2972.

DOI: 10.1016/j.compscitech.2007.05.006

Google Scholar

[13] S. Ghose, K. Watson, K. Sun, J. Criss, E. Siochi and J. Connell, High temperature resin/carbon nanotube composite fabrication. Composites Science and Technology 66 (2006) 1995–(2002).

DOI: 10.1016/j.compscitech.2006.01.008

Google Scholar

[14] R. Taherian, A. Nozad-Golikand and M.J. Hadianfard, The effect of mold pressing pressure and composition on properties of nanocomposite bipolar plate for proton exchange membrane fuel cell. Materials and Design 32 (2011) 3883–3892.

DOI: 10.1016/j.matdes.2011.02.059

Google Scholar

[15] A.P. Kumara, D. Depana, N.S. Tomerb and R.P. Singh, Nanoscale particles for polymer degradation and stabilization—Trendsand future perspectives. Progress in Polymer Science 34 (2009) 479–515.

DOI: 10.1016/j.progpolymsci.2009.01.002

Google Scholar

[16] J. Xiong, Z. Zheng, W. Song, D. Zhou and X. Wang, Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes. Composites: Part A 39 (2008) 904–910.

DOI: 10.1016/j.compositesa.2007.12.008

Google Scholar

[17] Y.K. Lee, D.J. Kim, H.J. Kim, T.S. Hwang, M. Rafailovich and J. Sokolov, Activation Energy and Curing Behavior of Resol- and Novolac-Type Phenolic Resins by Differential Scanning Calorimetry and Thermogravimetric Analysis. Journal of Applied Polymer Science 89 (2003).

DOI: 10.1002/app.12340

Google Scholar

[18] F.H. Su, Z.Z. Zhang, F. Guo, X.H. Men and W.M. Liu, Friction and wear properties of fabric/phenolic composites with plasma treated-hybrid glass/PTFE fabric. Composites Science and Technology 67 (2007) 981–988.

DOI: 10.1016/j.compscitech.2006.06.010

Google Scholar

[19] N. Pierard, Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 42 (2004) 1691–1697.

DOI: 10.1016/j.carbon.2004.02.031

Google Scholar

[20] Y. Pan, L. Li, S.H. Chan and J. Zhao, Correlation between dispersion state and electrical conductivity of MWNTs/PP composites prepared by melt blending. Composites: Part A 41 (2010) 419–426.

DOI: 10.1016/j.compositesa.2009.11.009

Google Scholar

[21] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon 46 (2008) 833-840.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[22] P.V. Kodgire, A.R. Bhattacharyya, S. Bose, N. Gupta, A.R. Kulkarni and A. Misra. Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: An assessment through electrical conductivity. Chemical Physics Letters 432 (2006) 480–485.

DOI: 10.1016/j.cplett.2006.10.088

Google Scholar

[23] H. Ma, Effect of elastomeric nanoparticles on properties of phenolic resin. Polymer 46 (2005) 10568–10573.

DOI: 10.1016/j.polymer.2005.07.103

Google Scholar

[24] G. Wu, Y. Tang and R. Weng, Dispersion of nano-carbon fi‏{TTP}-1279 lled polyimide composites using self-degradated low molecular poly(amic acid) as impurity-free dispersant. Polymer Degradation and Stability 95 (2010) 1449-1455.

DOI: 10.1016/j.polymdegradstab.2010.06.026

Google Scholar

[25] Y.A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa and M.S. Dresselhaus, Effect of ball milling on morphology of cup-stacked carbon Nanotubes. Chemical Physics Letters 355 (2002) 279–284.

DOI: 10.1016/s0009-2614(02)00248-8

Google Scholar

[26] H. Yurdakul, A.T. Seyhan, S. Turan, M. Tanoglu, W. Bauhofer and K. Schulte, Electric field effects on CNTs/vinyl ester suspensions and the resulting electrical and thermal composite properties. Composites Science and Technology 70 (2010).

DOI: 10.1016/j.compscitech.2010.08.007

Google Scholar

[27] M.H. Al-Saleh and U. Sundararaj, A review of vapor grown carbon nanofi‏{TTP}-1279 ber/polymer conductive composites. Carbon 47 (2009) 2-22.

DOI: 10.1016/j.carbon.2008.09.039

Google Scholar