[1]
X. Jia, Q. Fan, W. Xu, L. Yang, Cross-Tier Dual-Connectivity Designs of Three-Tier Hetnets With Decoupled Uplink/Downlink and Global Coverage Performance Evaluation, J. IEEE Access, (2019), Vol.7,.
DOI: 10.1109/access.2019.2895389
Google Scholar
[2]
J. G. Andrews, F. Baccelli, R. K. Ganti, A Tractable Approach to Coverage and Rate in Cellular Networks, IEEE Transactions on Communication, (2011) Vol.59, Issue 11, pp.3122-3134.
DOI: 10.1109/tcomm.2011.100411.100541
Google Scholar
[3]
T. Bai, R. W. Heath, Coverage and Rate Analysis for Millimeter-Wave Cellular Networks, IEEE Transactions on Communications, (2015), Vol.14, Issue 2, pp.1100-1114.
DOI: 10.1109/twc.2014.2364267
Google Scholar
[4]
Y. Chen, Z. Guo, X. Yang, Y. Hu, Q. Zhu, Optimization of Coverage in 5G Self-Organizing Small Cell Networks, Mobile Networks and Applications, Springer, (2017), https://doi.org/10.1007/s11036-017-0983-x.
DOI: 10.1007/s11036-017-0983-x
Google Scholar
[5]
X. Ge, S. Tu, G. Mao, C. X. Wang, T. Han, 5G Ultra-Dense Cellular Networks, IEEE Wireless Communication (2016), pp.71-79.
DOI: 10.1109/mwc.2016.7422408
Google Scholar
[6]
X. Ge, H. Jia, Y. Zhong, Y. Xiao, Y. Li, B. Vucetic, Energy Efficient Optimization of Wireless-powered 5G Full Duplex Cellular Networks A Mean Field Game Approach, IEEE Transaction on Green Communication and Networking, 2019, vol. 3, no. 2, p.455–467,.
DOI: 10.1109/tgcn.2019.2904093
Google Scholar
[7]
A. Gupta, R. K. Jha, A Survey of 5G Network: Architecture and Emerging Technologies J. IEEE Access, (2015).
DOI: 10.1109/ACCESS.2015.2461602
Google Scholar
[8]
J. Y. J. Sang, P. Xia, J. G. Andrews, Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive Downlink SINR Analysis, IEEE Transaction on wireless communications, (2012), Vol. 11, No. 10, pp.3484-3495.
DOI: 10.1109/twc.2012.081612.111361
Google Scholar
[9]
J. Qiu, D. Grace, G. Ding, M. D. Zakaria, Q. Wu, Air-Ground Heterogeneous Networks for 5G and Beyond via Integrating High and Low Altitude Platforms, IEEE Wireless Communications, (2019).
DOI: 10.1109/mwc.0001.1800575
Google Scholar
[10]
A. L. Rezaabad, H. Beyranvand, J. A. Salehi, M. Maier, Ultra-Dense 5G Small Cell Deployment for Fiber and Wireless Backhaul-Aware Infrastructures, IEEE Transactions on Vehicular Technology, (2018),.
DOI: 10.1109/tvt.2018.2875114
Google Scholar
[11]
A. K. Widiawan, R. Tafazolli, High Altitude Platform Station (HAPS): A Review of New Infrastructure Development for Future Wireless Communications, Wireless Personal Communications (2007) 42:387–404.
DOI: 10.1007/s11277-006-9184-9
Google Scholar
[12]
Y. Zhong, T. Q. S. Quek, X. Ge, Heterogeneous Cellular Networks with Spatio-Temporal Traffic: Delay Analysis and Scheduling, J. on Selected Areas in Communications, (2016),.
DOI: 10.1109/jsac.2017.2687379
Google Scholar
[13]
A. M. Hayajneh, S. A. R. Zaidi, D. C. McLernon, M. Ghogho, Optimal Dimensioning and Performance Analysis of Drone-Based Wireless Communications, 2016 IEEE Globecom Workshops (GC Wkshps), (2016),.
DOI: 10.1109/glocomw.2016.7848992
Google Scholar
[14]
L. Zhang, N. Ansari, On the Number and 3-D Placement of In-Band Full-Duplex Enabled Drone-mounted Base-stations, IEEE Wireless Communications Letters, 2018,.
DOI: 10.1109/lwc.2018.2867501
Google Scholar
[15]
A. Mahmood, M. Q. Usman, K. Shahzad, N. Saddique, Evolution of Optimal 3D placement of UAV with MinimumTransmit Power,J. International Journal of Wireless Communications and Mobile Computing. Vol. 7, No. 1, 2019, pp.13-18,.
DOI: 10.11648/j.wcmc.20190701.12
Google Scholar
[16]
M. Alzenad, A. El-Keyi, F. Lagum, H. Yanikomeroglu, 3D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage, IEEE Wireless Communications Letters, (2017), vol. 6, no. 4, p.434–437,.
DOI: 10.1109/lwc.2017.2700840
Google Scholar
[17]
M. Azari, F. Rosas, K. C. Chen, S. Pollin, Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity, IEEE Transactions on Communications,.
DOI: 10.1109/tcomm.2017.2746105
Google Scholar
[18]
J. Chakareski, S. Naqvi, N. Mastronarde, J. Xu, F. Afghah, A. Razi, An Energy Efficient Framework for UAV-Assisted Millimeter Wave 5G Heterogeneous Cellular Networks, IEEE Transactions on Green Communications, (2018).
DOI: 10.1109/tgcn.2019.2892141
Google Scholar
[19]
C. T. Cicek, H. Gultekin, B. Tavli, H. Yanikomeroglu, UAV Base Station Location Optimization for Next Generation Wireless Networks: Overview and Future Research Directions, Proceedings of the 1st International Conference on Unmanned Vehicle Systems (UVS), Muscat, Oman, (2019).
DOI: 10.1109/uvs.2019.8658363
Google Scholar
[20]
R. C. Palat, A. Annamalai, J. H. Reed, Cooperative relaying for ad-hoc ground networks using swarm UAVS, MILCOM 2005 - 2005 IEEE Military Communication Conference, (2005),.
DOI: 10.1109/milcom.2005.1605902
Google Scholar
[21]
A. Fouda, A. S. Ibrahim, I. Guvenc, M. Ghosh, UAV-Based in-band Integrated Access and Backhaul for 5G Communications, proceedings of VTC-Fall'18, Chicago, IL, (2018), arXiv:1807.07230 [eess.SP].
DOI: 10.1109/vtcfall.2018.8690860
Google Scholar
[22]
S. Iellamo, J. J. Lehtomäki, Z. Khan, Placement of 5G Drone Base Stations by Data Field Clustering, 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017,.
DOI: 10.1109/vtcspring.2017.8108590
Google Scholar
[23]
X. Lin, J. Xia, Z. Wang, Probabilistic caching placement in UAV-assisted heterogeneous wireless networks, J. Physical Communication 33 (2019) 54–61.
DOI: 10.1016/j.phycom.2019.01.004
Google Scholar
[24]
J. Lyu, Y. Zeng, R. Zhang, T. J. Lim, Placement Optimization of UAV-Mounted Mobile Base Stations, IEEE Communications Letters, (2016),.
DOI: 10.1109/lcomm.2016.2633248
Google Scholar
[25]
M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Optimal Transport Theory for Power-Efficient Deployment of Unmanned Aerial Vehicles, IEEE ICC 2016 – Wireless Communications Symposium, (2016).
DOI: 10.1109/icc.2016.7510870
Google Scholar
[26]
M. Mozaffari, W. Saad, M. Bennis, Y. H. Nam, and M. Debbah, A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems, IEEE Communications Surveys & Tutorials, (2019),.
DOI: 10.1109/comst.2019.2902862
Google Scholar
[27]
S. Sekander, H. Tabassum, E. Hossain, Multi-Tier Drone Architecture for 5G/B5G Cellular Networks: Challenges Trends, and Prospects,.
DOI: 10.1109/mcom.2018.1700666
Google Scholar
[28]
P. G. Sudheesh, M. Mozaffari, M. Magarini, W. Saad, P. Muthuchidambaranathan, Sum-Rate Analysis for High Altitude Platform (HAP) Drones with Tethered Balloon Relay, IEEE Communications Letters, (2017),.
DOI: 10.1109/LCOMM.2017.2785847
Google Scholar
[29]
Ø. J. Rødseth, B. Kvamstad, D4.3: Evaluation of ship to shore communication links, MUNIN project, MARINTEK, (2012).
Google Scholar
[30]
Ø. J. Rødseth, N. Graziosi, R. Nicolè, D2.2.C-1 Research report on broadband applications-Part1: state of the art, Project: Maritime Navigation Information Services, MARINTEK, (2006).
Google Scholar
[31]
Ø. J. Rødseth, B. Kvamstad, A. Tjora, F. Drezet, D-D1.3 Ship-shore communication Requirements, MARINTEK, (2009).
Google Scholar
[32]
Ø. J. Rødseth, B. Kvamstad, The role of digital communication technology in e-Navigation, MARINTEK, (2009).
Google Scholar
[33]
SOLAS: International Convention for the Safety of Life at Sea (1974).
Google Scholar
[34]
D. W. Matolak, R. Sun, Air–Ground Channel Characterization for Unmanned Aircraft Systems- Part I: Methods, Measurements, and Model for Over-water setting, IEEE Trans. Veh. Technol., (2017), Vol. 66, No.1, pp.26-44,.
DOI: 10.1109/tvt.2016.2530306
Google Scholar
[35]
H.N. Teodorescu, On Fuzzy Sequences, Fixed Points and Periodicity in Iterated Fuzzy Maps, Int. J. of Computers, Communications, (2011), Vol. VI , No. 4 , pp.749-760, ISSN 1841-9836, E-ISSN 1841-9844.
DOI: 10.15837/ijccc.2011.4.2107
Google Scholar
[36]
Y. Bai, H. Zhuang, D. Wang, Advanced Fuzzy Logic Technologies in Industrial Applications, Springer-Verlag London Limited (2006).
Google Scholar
[37]
A. Fotouhi, M. Ding, M. Hassan, Flying Drone Bas Stations for Macro Hotspots, J. IEEE Access, 2018, Vol. 6, pp.19530-19539.
DOI: 10.1109/access.2018.2817799
Google Scholar
[38]
International Communication Union (ITU), Technical characteristics of a VHF data exchange system operating in the VHF band allocated to the maritime mobile service, p.162.
Google Scholar
[39]
A. Fotouhi, M.Ding, M. Hassan, Dynamic Base Station Repositioning to Improve Performance of Drone Small Cells, 2016 IEEE Globecom Workshops (GC Wkshps),.
DOI: 10.1109/glocomw.2016.7848883
Google Scholar
[40]
A. Fotouhi, M. Ding, and M. Hassan, Drone Cells: Improving 5G Spectral Efficiency using Drone-mounted Flying Base Stations, 2017, ArXiv170702041 Cs.
DOI: 10.1016/j.jnca.2020.102895
Google Scholar
[41]
K.-M. Chen, T.-H. Chang, and T.-S. Lee, Lifetime Maximization for Uplink Transmission in UAV-Enabled Wireless Networks, in 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, p.1–6,.
DOI: 10.1109/wcnc.2019.8886053
Google Scholar