Effect of Al on Corrosion Behavior in 3.5%NaCl Solution of AlxCoCrFeNi High Entropy Alloys

Article Preview

Abstract:

The high entropy alloys have attracted the interest of material scientists due to theirspecial mechanical properties and a very good corrosion behavior. The corrosion resistance is provided by the formation of a passive, thin and compact oxide film that prevents the chemical dissolution of the metallic matrix. The effect of aluminum in AlxCrFeCoNi high entropy alloys (with x = 1; 1.5 and 2) that were obtained by electric arc melting under argon atmosphere has been studied in the paper. In order to understand the processes involved in metal corrosion, the alloys have been tested by polarization resistance method in 3.5% NaCl solution and main corrosion parameters have been analyzed (i.e. corrosion potential; corrosion current density; corrosion rate and polarization resistance). The surfaces of the corroded samples were examined by scanning electron microscopy to estimate the effect of the chemical composition on corrosion resistance. The corrosion tests have shown that the corrosion resistance of the HEA decreases by increasing the aluminum content from about 15 at.% to 32 at. % Al and reducing the chromium content from 28 at. % to 18 at.% Cr.

You might also be interested in these eBooks

Info:

Pages:

20-30

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shi, Y., Yang, B., Liaw, P. K., Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 7, 43 (2017).

DOI: 10.3390/met7020043

Google Scholar

[2] Qiu, Y., Thomas, S., Gibson, M.A., Hamish, L., Fraser, H.L., Birbilis, N., Corrosion of high entropy alloys, Materials Degradation, 1, (2017) 1-15;.

DOI: 10.1038/s41529-017-0009-y

Google Scholar

[3] Qiu, X.W., Zhang, Y.P., He, L. and Liu, C.G., Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy, Journal of alloys and compounds, 549 (2013) 195-199.

DOI: 10.1016/j.jallcom.2012.09.091

Google Scholar

[4] Shi, Y., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A. and Liaw, P.K., Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corrosion Science, 119 (2017) 33-45.

DOI: 10.1016/j.corsci.2017.02.019

Google Scholar

[5] Gao, L., Liao, W., Zhang, H., Utama, Surjadi J., Sun, D., Lu, Y., Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films, Coatings, 7, 156 (2017).

DOI: 10.3390/coatings7100156

Google Scholar

[6] López Ríos, M., Florido Suárez, N., Voiculescu, I., Geanta, V., Mirza Rosca, J.C., EIS Characterization of Passive Films Formed on AlxCoCrFeNi Alloys, NanoMed, Joint Conferences Book of Abstracts, (2019) p.161.

Google Scholar

[7] Mary, S. J, Nagalakshmi, R., Rajendran, S., Epshiph, R., High entropy alloys and corrosion resistance – a Bird's eye view, Eur. Chem. Bull, 3 (12), (2014) 1031-1035.

Google Scholar

[8] Rodriguez, A. A., Tylczak, J.H., Ziomek-Moroz, M., Corrosion Evaluation of CoCrFeMnNi High-Entropy Alloys (HEAs) for Corrosion Protection of Natural Gas Transmission Pipelines, NACE International (2018), paper 11174, 1- 13.

DOI: 10.1149/ma2017-01/15/952

Google Scholar

[9] Luo, H., Li, Z., M. Mingers, A., Raabe, D., Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros.Sci. 134 (2018) 131-139.

DOI: 10.1016/j.corsci.2018.02.031

Google Scholar

[10] Kumar, N., Fusco, M., Komarasamy, M., Mishra R.S., Bourham, M., Murty, K.L., Understanding effect of 3.5 wt. % NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy, Journal of Nuclear Materials 495 (2017) 154-163.

DOI: 10.1016/j.jnucmat.2017.08.015

Google Scholar

[11] Tang, Z., Huang, L., He, W., Liaw, P.K., Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys, Entropy, 16 (2014) 895-911,.

DOI: 10.3390/e16020895

Google Scholar

[12] Milosan, I., Florescu, M., Cristea, D., Voiculescu, I., Pop, M. A., Cañadas, I., Rodriguez, J., Bogatu, C.A., Bedo, T., Evaluation of Heat-Treated AISI 316 Stainless Steel in Solar Furnaces to Be Used as Possible Implant Material, Materials, 13 (3) 2020, 581-581.

DOI: 10.3390/ma13030581

Google Scholar

[13] Kao, Y.F.; Lee, T.D.; Chen, S.K.; Chang, Y.S., Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52 (2010) 1026–1034.

DOI: 10.1016/j.corsci.2009.11.028

Google Scholar

[14] Kao, Y.F., Chen, T.J., Chen, S.K., Yeh, J.W., Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds 488 (2009) 57–64.

DOI: 10.1016/j.jallcom.2009.08.090

Google Scholar

[15] Geantă,V., Voiculescu, I., Miloșan, I., Istrate, B., Mateş, I. M., Chemical Composition Influence on Microhardness, Microstructure and Phases Morphology of AlxCrFeCoNi High Entropy Alloys, Rev.Chim. (Bucharest) 69, 4 (2018) 798-801.

DOI: 10.37358/rc.18.4.6203

Google Scholar

[16] Voiculescu, I., Geantă, V., Ştefănoiu, R., Patroi, D., Binchiciu, H., Influence of the Chemical Composition on the Microstructure and Microhardness of AlCrFeCoNi High Entropy Alloy. Rev. Chim. (Bucharest) 64, 12 (2013) 1441-1444.

Google Scholar

[17] Fazakas, E., Varga, B., Geanta, V., Berecz, T., Jenei, P., Voiculescu, I., Coşniţă, M., Ştefănoiu, R., Microstructure, thermal, and corrosion behavior of the AlAgCuNiSnTi Equiatomic multicomponent alloy, Materials, 12 Issue: 6 (2019) Article Number: 926.

DOI: 10.3390/ma12060926

Google Scholar

[18] Zhang, Y., Zuo, T.T, Tang Z., Gao, M.C., Dahmen, K.A, Liaw P.K., Lu Z.P., Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1–93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[19] Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., Yang, Y., High entropy alloy: challenges and prospects, Materials Today, 19, no.6 (2016) 349-362.

DOI: 10.1016/j.mattod.2015.11.026

Google Scholar

[201] Yang, H.H., Tsai, W.T., Kuo, J.C., Yang, C.C., Solid/liquid interaction between a multicomponent FeCrNiCoMnAl high entropy alloy and molten aluminum, Journal of Alloys and Compounds 509 (2011) 8176– 8182.

DOI: 10.1016/j.jallcom.2011.05.104

Google Scholar

[21] Ming-Hung, T., M.H., Yeh, J.W., High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2 No. 3, (2014) 107–123.

Google Scholar

[22] Wang, S., Zhao, Y., Peng, C., Guo, Q., Xu, X., Hou, H., Study on the mechanical properties and corrosion resistance of AlxCoFeNiCr1−x high-entropy alloys, Materials Research Express, 6 (12), 2019, 1265e2.

DOI: 10.1088/2053-1591/ab3d86

Google Scholar

[23] Wang, S., Zhao, Y., Peng, C., Guo, Q., Xu, X., Hou, H., Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature, Materials Chemistry and Physics, 244 (2020) 122700.

DOI: 10.1016/j.matchemphys.2020.122700

Google Scholar

[24] Geanta, V; Voiculescu, I; Istrate, B; Vranceanu, DM; Ciocoiu, R; Cotrut, CM, The Influence of Chromium Content on the Structural and Mechanical Properties of AlCrxFeCoNi High Entropy Alloys, International Journal of Engineering Research in Africa, Vol.37, (2018) 23-28.

DOI: 10.4028/www.scientific.net/jera.37.23

Google Scholar