[1]
O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, and T. Adegbola, Microstructural characteristics and thermophysical properties of spark plasma sintered Inconel 738LC,, The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1-4, pp.1425-1436, (2019).
DOI: 10.1007/s00170-019-03983-w
Google Scholar
[2]
R. Yamanoglu, W. Bradbury, E. Karakulak, E. Olevsky, and R. German, Characterisation of nickel alloy powders processed by spark plasma sintering,, Powder Metallurgy, vol. 57, no. 5, pp.380-386, (2014).
DOI: 10.1179/1743290114y.0000000088
Google Scholar
[3]
H. ElRakayby, H. Kim, S. Hong, and K. Kim, An investigation of densification behavior of nickel alloy powder during hot isostatic pressing,, Advanced Powder Technology, vol. 26, no. 5, pp.1314-1318, (2015).
DOI: 10.1016/j.apt.2015.07.005
Google Scholar
[4]
E. Ezugwu, Z. Wang, and A. Machado, The machinability of nickel-based alloys: a review,, Journal of Materials Processing Technology, vol. 86, no. 1-3, pp.1-16, (1999).
DOI: 10.1016/s0924-0136(98)00314-8
Google Scholar
[5]
I. Moravcik et al., Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering,, Materials & Design, vol. 119, pp.141-150, 2017/04/05/ 2017, doi: https://doi.org/10.1016/j.matdes.2017.01.036.
DOI: 10.1016/j.matdes.2017.01.036
Google Scholar
[6]
S. Yan, Q. Wang, X. Chen, C. Zhang, and G. Cui, Fabrication of highly compact Inconel 718 alloy by spark plasma sintering and solution treatment followed by aging,, Vacuum, vol. 163, pp.194-203, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.vacuum.2019.01.048.
DOI: 10.1016/j.vacuum.2019.01.048
Google Scholar
[7]
I. M. Makena, M. B. Shongwe, M. M. Ramakokovhu, and M. L. Lethabane, A Review on Sintered Nickel based Alloys,, in Proceedings of the World Congress on Engineering, 2017, vol. 2.
Google Scholar
[8]
O. Ogunbiyi, T. Jamiru, E. Sadiku, O. Adesina, L. Beneke, and T. Adegbola, Spark plasma sintering of nickel and nickel based alloys: A Review,, Procedia Manufacturing, vol. 35, pp.1324-1329, (2019).
DOI: 10.1016/j.promfg.2019.05.022
Google Scholar
[9]
H. Castings, The Global Superalloys Industry: Review and Forecast.,.
Google Scholar
[10]
V. Mamedov, Spark plasma sintering as advanced PM sintering method,, Powder Metallurgy, vol. 45, no. 4, pp.322-328, (2002).
DOI: 10.1179/003258902225007041
Google Scholar
[11]
S. Somiya, Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press, (2013).
Google Scholar
[12]
O. Ogunbiyi, T. Jamiru, R. Sadiku, O. Adesina, J. lolu Olajide, and L. Beneke, Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM),, International Journal of Lightweight Materials and Manufacture, (2019).
DOI: 10.1016/j.ijlmm.2019.10.002
Google Scholar
[13]
S. Diouf and A. Molinari, Densification mechanisms in spark plasma sintering: Effect of particle size and pressure,, Powder Technology, vol. 221, pp.220-227, (2012).
DOI: 10.1016/j.powtec.2012.01.005
Google Scholar
[14]
O. T. Adesina, E. R. Sadiku, T. Jamiru, O. F. Ogunbiyi, and O. S. Adesina, Thermal properties of spark plasma-sintered polylactide/graphene composites,, Materials Chemistry and Physics, vol. 242, p.122545, (2020).
DOI: 10.1016/j.matchemphys.2019.122545
Google Scholar
[15]
C. Vahlas and Z. Li, Microstructural and mechanical properties of powder NiCoCrAlYTa superalloy consolidated by spark plasma sintering,, in 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), 2009: IEEE, pp.1019-1023.
DOI: 10.1109/tic-sth.2009.5444532
Google Scholar
[16]
D. Levasseur and M. Brochu, Interparticle liquid film formation during spark plasma sintering of inconel 718 superalloy,, in Advanced Materials Research, 2012, vol. 409: Trans Tech Publ, pp.763-768.
DOI: 10.4028/www.scientific.net/amr.409.763
Google Scholar
[17]
M. Shongwe et al., Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys,, Journal of Alloys and compounds, vol. 678, pp.241-248, (2016).
DOI: 10.1016/j.jallcom.2016.03.270
Google Scholar
[18]
L. R. Kanyane, A. P. Popoola, and N. Malatji, Development of spark plasma sintered TiAlSiMoW multicomponent alloy: Microstructural evolution, corrosion and oxidation resistance,, Results in Physics, vol. 12, pp.1754-1761, (2019).
DOI: 10.1016/j.rinp.2019.01.098
Google Scholar
[19]
L. Liu et al., Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder,, Materials Science and Engineering: A, vol. 650, pp.171-182, (2016).
DOI: 10.1016/j.msea.2015.10.048
Google Scholar
[20]
O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, and J. Fayomi, Influence of sintering temperature on the corrosion and wear behaviour of spark plasma–sintered Inconel 738LC alloy,, The International Journal of Advanced Manufacturing Technology, vol. 104, no. 9-12, pp.4195-4206, (2019).
DOI: 10.1007/s00170-019-04199-8
Google Scholar
[21]
S.-J. L. Kang, Sintering processes,, Sintering. Oxford: Butterworth-Heinemann, p. 3e8, (2005).
Google Scholar
[22]
C. Yang et al., Influence of powder properties on densification mechanism during spark plasma sintering,, Scripta Materialia, vol. 139, pp.96-99, (2017).
DOI: 10.1016/j.scriptamat.2017.06.034
Google Scholar
[23]
N. Ahmad and S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2,, Journal of Alloys and Compounds, vol. 720, pp.502-509, (2017).
DOI: 10.1016/j.jallcom.2017.05.293
Google Scholar
[24]
N. Ahmad, S. Khan, and M. M. N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors,, Ceramics International, vol. 44, no. 13, pp.15972-15980, (2018).
DOI: 10.1016/j.ceramint.2018.06.024
Google Scholar
[25]
L. Liu et al., Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process,, Intermetallics, vol. 66, pp.1-7, (2015).
DOI: 10.1016/j.intermet.2015.06.010
Google Scholar
[26]
T. Paul and S. P. Harimkar, Viscous flow activation energy adaptation by isochronal spark plasma sintering,, Scripta Materialia, vol. 126, pp.37-40, (2017).
DOI: 10.1016/j.scriptamat.2016.08.018
Google Scholar
[27]
C. Panagopoulos, K. Giannakopoulos, and V. Saltas, Wear behavior of nickel superalloy, CMSX-186,, Materials Letters, vol. 57, no. 29, pp.4611-4616, (2003).
DOI: 10.1016/s0167-577x(03)00370-7
Google Scholar
[28]
S. Rani, A. K. Agrawal, and V. Rastogi, Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant,, Case studies in engineering failure analysis, vol. 8, pp.1-10, (2017).
DOI: 10.1016/j.csefa.2016.11.002
Google Scholar
[29]
J. Dobrovska, S. Zla, F. Kavicka, B. Smetana, and V. Vodarek, Study of Thermo-Physical Properties of Selected Nickel-Based Superalloys with Use of DTA Method,, in Engineering Systems Design and Analysis, 2012, vol. 44861: American Society of Mechanical Engineers, pp.101-105.
DOI: 10.1115/esda2012-82975
Google Scholar
[30]
O. Ogunbiyi, E. Sadiku, T. Jamiru, O. Adesina, and L. Beneke, Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics,, Materials Research Express, vol. 6, no. 10, p. 1065g8, (2019).
DOI: 10.1088/2053-1591/ab432f
Google Scholar
[31]
A. Standard, E112-13," Standard Test Method for Determin ing Average Grain Size., West Conshohocken, PA, pp.1-28, (2013).
Google Scholar
[32]
T. Osada, Y. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada, Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure,, Acta Materialia, vol. 61, no. 5, pp.1820-1829, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.actamat.2012.12.004.
DOI: 10.1016/j.actamat.2012.12.004
Google Scholar
[33]
T. Osada, Y. F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada, New quantitative analysis of contributing factors to strength of disk superalloys (Superalloys 2012). Chichester: John Wiley & Sons (in English), 2012, pp.121-128.
DOI: 10.1002/9781118516430.ch13
Google Scholar
[34]
H. Jabbar, A. Couret, L. Durand, and J.-P. Monchoux, Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering,, Journal of alloys and compounds, vol. 509, no. 41, pp.9826-9835, (2011).
DOI: 10.1016/j.jallcom.2011.08.008
Google Scholar
[35]
S. Diouf, C. Menapace, and A. Molinari, Study of effect of particle size on densification of copper during spark plasma sintering,, Powder Metallurgy, vol. 55, no. 3, pp.228-234, 2012/07/01 2012,.
DOI: 10.1179/1743290111y.0000000019
Google Scholar
[36]
O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, and B. A. Obadele, Corrosion and Wear Behaviour of Spark Plasma-Sintered NiCrCoAlTiW-Ta Superalloy,, Journal of Bio-and Tribo-Corrosion, vol. 6, no. 1, p.1, (2020).
DOI: 10.1007/s40735-019-0297-6
Google Scholar
[37]
C. Dimitri, S. Mohamed, B. Thierry, and G. Jean-Claude, Influence of particle-size distribution and temperature on the rheological properties of highly concentrated Inconel feedstock alloy 718,, Powder technology, vol. 322, pp.273-289, (2017).
DOI: 10.1016/j.powtec.2017.08.049
Google Scholar
[38]
Y. Cheng, Z. Cui, L. Cheng, D. Gong, and W. Wang, Effect of particle size on densification of pure magnesium during spark plasma sintering,, Advanced Powder Technology, vol. 28, no. 4, pp.1129-1135, (2017).
DOI: 10.1016/j.apt.2017.01.017
Google Scholar
[39]
D. Lu, Y. Yang, Y. Qin, and G. Yang, Effect of particle size and sintering temperature on densification during coupled multifield-activated microforming,, Journal of Materials Research, vol. 27, no. 20, pp.2579-2586, (2012).
DOI: 10.1557/jmr.2012.262
Google Scholar
[40]
A. Mondal, A. Upadhyaya, and D. Agrawal, Effect of heating mode and sintering temperature on the consolidation of 90W–7Ni–3Fe alloys,, Journal of Alloys and Compounds, vol. 509, no. 2, pp.301-310, (2011).
DOI: 10.1016/j.jallcom.2010.09.008
Google Scholar
[41]
Z. Zhang et al., Mechanical behavior of cryomilled Ni superalloy by spark plasma sintering,, Metallurgical and Materials Transactions A, vol. 40, no. 9, pp.2023-2029, (2009).
DOI: 10.1007/s11661-009-9914-1
Google Scholar
[42]
Z.-H. Zhang, F.-C. Wang, L. Wang, and S.-K. Li, Ultrafine-grained copper prepared by spark plasma sintering process,, Materials Science and Engineering: A, vol. 476, no. 1-2, pp.201-205, (2008).
DOI: 10.1016/j.msea.2007.04.107
Google Scholar
[43]
A. Fedrizzi, M. Pellizzari, and M. Zadra, Influence of particle size ratio on densification behaviour of AISI H13/AISI M3: 2 powder mixture,, Powder technology, vol. 228, pp.435-442, (2012).
DOI: 10.1016/j.powtec.2012.06.007
Google Scholar
[44]
V. Maleki, H. Omidvar, and M.-R. Rahimipour, Influences of gap size and cyclic-thermal-shock treatment on mechanical properties of TLP bonded IN-738LC superalloy,, Transactions of Nonferrous Metals Society of China, vol. 28, no. 5, pp.920-930, (2018).
DOI: 10.1016/s1003-6326(18)64726-0
Google Scholar
[45]
J. Tiley, O. Senkov, G. Viswanathan, S. Nag, R. Banerjee, and J. Hwang, Determination of Gamma-Prime Site Occupancies in Nickel Superalloys Using Atom Probe Tomography and X-Ray Diffraction (Preprint),, University of North Texas Denton, (2012).
DOI: 10.21236/ada563340
Google Scholar
[46]
P. Mignanelli, N. Jones, M. Hardy, and H. Stone, On the time-temperature-transformation behavior of a new dual-superlattice nickel-based superalloy,, Metallurgical and Materials Transactions A, vol. 49, no. 3, pp.699-707, (2018).
DOI: 10.1007/s11661-017-4355-8
Google Scholar
[47]
D. Jaramillo, R. Cuenca, and F. Juárez, Sintering comparison of NiCoCrAl-Ta powder processed by hot pressing and spark plasma,, Powder technology, vol. 221, pp.264-270, (2012).
DOI: 10.1016/j.powtec.2012.01.011
Google Scholar
[48]
F. J. López and R. C. Alvarez, Development of sintered MCrAlY alloys for aeronautical applications,, in Sintering-Methods and Products: IntechOpen, (2012).
DOI: 10.5772/32714
Google Scholar
[49]
J. Yu, L. Huang, and H. Luo, Effects of Cu particle size on CuSnFeNi/diamond composite processed using hybrid microwave sintering,, Powder Metallurgy, vol. 62, no. 2, pp.124-132, (2019).
DOI: 10.1080/00325899.2019.1602948
Google Scholar
[50]
S. Ma et al., Effects of temperature on microstructure and mechanical properties of IN718 reinforced by reduced graphene oxide through spark plasma sintering,, Journal of Alloys and Compounds, vol. 767, pp.675-681, (2018).
DOI: 10.1016/j.jallcom.2018.07.071
Google Scholar
[51]
Ö. Özgün, H. Ö. Gülsoy, R. Yilmaz, and F. Findik, Injection molding of nickel based 625 superalloy: sintering, heat treatment, microstructure and mechanical properties,, Journal of alloys and compounds, vol. 546, pp.192-207, (2013).
DOI: 10.1016/j.jallcom.2012.08.069
Google Scholar