Influence of Nickel Powder Particle Size on the Microstructure and Densification of Spark Plasma Sintered Nickel-Based Superalloy

Article Preview

Abstract:

This study aims to investigate the effects of powder particle size on the densification and microhardness properties of spark plasma sintered superalloy. Three particles size ranges of nickel were used in this study, namely, (3-44, 45-106 and 106-150 μm), and this is the matrix in the IN738LC superalloy composition (powder), used in the study. The effects of the particle size were examined at a specific applied temperature and pressure. The transitioning stages during the sintering process of the green powders to the formation of the sintered alloy were analyzed and given as the particle rearrangement stage, the localized deformation stage and the neck formation/grain growth stage. There was the formation of γ, γ' and a solid solution within the microstructure of the sintered alloys. The effect of particle size was more pronounced on the grain sizes obtained, while the phases formed is the same for the three alloys. The results indicate that the nickel particle size (>60% of the total composition) has a significant influence on the densification, porosity, grain size and hardness properties of the IN738LC sintered alloy. Finer nickel particle size resulted in a sintered product with smaller grain size (9 µm), reduced percentage porosity (3.9%), increased relative density (96.1%) and increased hardness properties (371 Hv).

You might also be interested in these eBooks

Info:

Pages:

1-19

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, and T. Adegbola, Microstructural characteristics and thermophysical properties of spark plasma sintered Inconel 738LC,, The International Journal of Advanced Manufacturing Technology, vol. 104, no. 1-4, pp.1425-1436, (2019).

DOI: 10.1007/s00170-019-03983-w

Google Scholar

[2] R. Yamanoglu, W. Bradbury, E. Karakulak, E. Olevsky, and R. German, Characterisation of nickel alloy powders processed by spark plasma sintering,, Powder Metallurgy, vol. 57, no. 5, pp.380-386, (2014).

DOI: 10.1179/1743290114y.0000000088

Google Scholar

[3] H. ElRakayby, H. Kim, S. Hong, and K. Kim, An investigation of densification behavior of nickel alloy powder during hot isostatic pressing,, Advanced Powder Technology, vol. 26, no. 5, pp.1314-1318, (2015).

DOI: 10.1016/j.apt.2015.07.005

Google Scholar

[4] E. Ezugwu, Z. Wang, and A. Machado, The machinability of nickel-based alloys: a review,, Journal of Materials Processing Technology, vol. 86, no. 1-3, pp.1-16, (1999).

DOI: 10.1016/s0924-0136(98)00314-8

Google Scholar

[5] I. Moravcik et al., Microstructure and mechanical properties of Ni1,5Co1,5CrFeTi0,5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering,, Materials & Design, vol. 119, pp.141-150, 2017/04/05/ 2017, doi: https://doi.org/10.1016/j.matdes.2017.01.036.

DOI: 10.1016/j.matdes.2017.01.036

Google Scholar

[6] S. Yan, Q. Wang, X. Chen, C. Zhang, and G. Cui, Fabrication of highly compact Inconel 718 alloy by spark plasma sintering and solution treatment followed by aging,, Vacuum, vol. 163, pp.194-203, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.vacuum.2019.01.048.

DOI: 10.1016/j.vacuum.2019.01.048

Google Scholar

[7] I. M. Makena, M. B. Shongwe, M. M. Ramakokovhu, and M. L. Lethabane, A Review on Sintered Nickel based Alloys,, in Proceedings of the World Congress on Engineering, 2017, vol. 2.

Google Scholar

[8] O. Ogunbiyi, T. Jamiru, E. Sadiku, O. Adesina, L. Beneke, and T. Adegbola, Spark plasma sintering of nickel and nickel based alloys: A Review,, Procedia Manufacturing, vol. 35, pp.1324-1329, (2019).

DOI: 10.1016/j.promfg.2019.05.022

Google Scholar

[9] H. Castings, The Global Superalloys Industry: Review and Forecast.,.

Google Scholar

[10] V. Mamedov, Spark plasma sintering as advanced PM sintering method,, Powder Metallurgy, vol. 45, no. 4, pp.322-328, (2002).

DOI: 10.1179/003258902225007041

Google Scholar

[11] S. Somiya, Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press, (2013).

Google Scholar

[12] O. Ogunbiyi, T. Jamiru, R. Sadiku, O. Adesina, J. lolu Olajide, and L. Beneke, Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM),, International Journal of Lightweight Materials and Manufacture, (2019).

DOI: 10.1016/j.ijlmm.2019.10.002

Google Scholar

[13] S. Diouf and A. Molinari, Densification mechanisms in spark plasma sintering: Effect of particle size and pressure,, Powder Technology, vol. 221, pp.220-227, (2012).

DOI: 10.1016/j.powtec.2012.01.005

Google Scholar

[14] O. T. Adesina, E. R. Sadiku, T. Jamiru, O. F. Ogunbiyi, and O. S. Adesina, Thermal properties of spark plasma-sintered polylactide/graphene composites,, Materials Chemistry and Physics, vol. 242, p.122545, (2020).

DOI: 10.1016/j.matchemphys.2019.122545

Google Scholar

[15] C. Vahlas and Z. Li, Microstructural and mechanical properties of powder NiCoCrAlYTa superalloy consolidated by spark plasma sintering,, in 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), 2009: IEEE, pp.1019-1023.

DOI: 10.1109/tic-sth.2009.5444532

Google Scholar

[16] D. Levasseur and M. Brochu, Interparticle liquid film formation during spark plasma sintering of inconel 718 superalloy,, in Advanced Materials Research, 2012, vol. 409: Trans Tech Publ, pp.763-768.

DOI: 10.4028/www.scientific.net/amr.409.763

Google Scholar

[17] M. Shongwe et al., Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys,, Journal of Alloys and compounds, vol. 678, pp.241-248, (2016).

DOI: 10.1016/j.jallcom.2016.03.270

Google Scholar

[18] L. R. Kanyane, A. P. Popoola, and N. Malatji, Development of spark plasma sintered TiAlSiMoW multicomponent alloy: Microstructural evolution, corrosion and oxidation resistance,, Results in Physics, vol. 12, pp.1754-1761, (2019).

DOI: 10.1016/j.rinp.2019.01.098

Google Scholar

[19] L. Liu et al., Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder,, Materials Science and Engineering: A, vol. 650, pp.171-182, (2016).

DOI: 10.1016/j.msea.2015.10.048

Google Scholar

[20] O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, and J. Fayomi, Influence of sintering temperature on the corrosion and wear behaviour of spark plasma–sintered Inconel 738LC alloy,, The International Journal of Advanced Manufacturing Technology, vol. 104, no. 9-12, pp.4195-4206, (2019).

DOI: 10.1007/s00170-019-04199-8

Google Scholar

[21] S.-J. L. Kang, Sintering processes,, Sintering. Oxford: Butterworth-Heinemann, p. 3e8, (2005).

Google Scholar

[22] C. Yang et al., Influence of powder properties on densification mechanism during spark plasma sintering,, Scripta Materialia, vol. 139, pp.96-99, (2017).

DOI: 10.1016/j.scriptamat.2017.06.034

Google Scholar

[23] N. Ahmad and S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2,, Journal of Alloys and Compounds, vol. 720, pp.502-509, (2017).

DOI: 10.1016/j.jallcom.2017.05.293

Google Scholar

[24] N. Ahmad, S. Khan, and M. M. N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors,, Ceramics International, vol. 44, no. 13, pp.15972-15980, (2018).

DOI: 10.1016/j.ceramint.2018.06.024

Google Scholar

[25] L. Liu et al., Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process,, Intermetallics, vol. 66, pp.1-7, (2015).

DOI: 10.1016/j.intermet.2015.06.010

Google Scholar

[26] T. Paul and S. P. Harimkar, Viscous flow activation energy adaptation by isochronal spark plasma sintering,, Scripta Materialia, vol. 126, pp.37-40, (2017).

DOI: 10.1016/j.scriptamat.2016.08.018

Google Scholar

[27] C. Panagopoulos, K. Giannakopoulos, and V. Saltas, Wear behavior of nickel superalloy, CMSX-186,, Materials Letters, vol. 57, no. 29, pp.4611-4616, (2003).

DOI: 10.1016/s0167-577x(03)00370-7

Google Scholar

[28] S. Rani, A. K. Agrawal, and V. Rastogi, Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant,, Case studies in engineering failure analysis, vol. 8, pp.1-10, (2017).

DOI: 10.1016/j.csefa.2016.11.002

Google Scholar

[29] J. Dobrovska, S. Zla, F. Kavicka, B. Smetana, and V. Vodarek, Study of Thermo-Physical Properties of Selected Nickel-Based Superalloys with Use of DTA Method,, in Engineering Systems Design and Analysis, 2012, vol. 44861: American Society of Mechanical Engineers, pp.101-105.

DOI: 10.1115/esda2012-82975

Google Scholar

[30] O. Ogunbiyi, E. Sadiku, T. Jamiru, O. Adesina, and L. Beneke, Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics,, Materials Research Express, vol. 6, no. 10, p. 1065g8, (2019).

DOI: 10.1088/2053-1591/ab432f

Google Scholar

[31] A. Standard, E112-13," Standard Test Method for Determin ing Average Grain Size., West Conshohocken, PA, pp.1-28, (2013).

Google Scholar

[32] T. Osada, Y. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada, Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure,, Acta Materialia, vol. 61, no. 5, pp.1820-1829, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.actamat.2012.12.004.

DOI: 10.1016/j.actamat.2012.12.004

Google Scholar

[33] T. Osada, Y. F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada, New quantitative analysis of contributing factors to strength of disk superalloys (Superalloys 2012). Chichester: John Wiley & Sons (in English), 2012, pp.121-128.

DOI: 10.1002/9781118516430.ch13

Google Scholar

[34] H. Jabbar, A. Couret, L. Durand, and J.-P. Monchoux, Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering,, Journal of alloys and compounds, vol. 509, no. 41, pp.9826-9835, (2011).

DOI: 10.1016/j.jallcom.2011.08.008

Google Scholar

[35] S. Diouf, C. Menapace, and A. Molinari, Study of effect of particle size on densification of copper during spark plasma sintering,, Powder Metallurgy, vol. 55, no. 3, pp.228-234, 2012/07/01 2012,.

DOI: 10.1179/1743290111y.0000000019

Google Scholar

[36] O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, and B. A. Obadele, Corrosion and Wear Behaviour of Spark Plasma-Sintered NiCrCoAlTiW-Ta Superalloy,, Journal of Bio-and Tribo-Corrosion, vol. 6, no. 1, p.1, (2020).

DOI: 10.1007/s40735-019-0297-6

Google Scholar

[37] C. Dimitri, S. Mohamed, B. Thierry, and G. Jean-Claude, Influence of particle-size distribution and temperature on the rheological properties of highly concentrated Inconel feedstock alloy 718,, Powder technology, vol. 322, pp.273-289, (2017).

DOI: 10.1016/j.powtec.2017.08.049

Google Scholar

[38] Y. Cheng, Z. Cui, L. Cheng, D. Gong, and W. Wang, Effect of particle size on densification of pure magnesium during spark plasma sintering,, Advanced Powder Technology, vol. 28, no. 4, pp.1129-1135, (2017).

DOI: 10.1016/j.apt.2017.01.017

Google Scholar

[39] D. Lu, Y. Yang, Y. Qin, and G. Yang, Effect of particle size and sintering temperature on densification during coupled multifield-activated microforming,, Journal of Materials Research, vol. 27, no. 20, pp.2579-2586, (2012).

DOI: 10.1557/jmr.2012.262

Google Scholar

[40] A. Mondal, A. Upadhyaya, and D. Agrawal, Effect of heating mode and sintering temperature on the consolidation of 90W–7Ni–3Fe alloys,, Journal of Alloys and Compounds, vol. 509, no. 2, pp.301-310, (2011).

DOI: 10.1016/j.jallcom.2010.09.008

Google Scholar

[41] Z. Zhang et al., Mechanical behavior of cryomilled Ni superalloy by spark plasma sintering,, Metallurgical and Materials Transactions A, vol. 40, no. 9, pp.2023-2029, (2009).

DOI: 10.1007/s11661-009-9914-1

Google Scholar

[42] Z.-H. Zhang, F.-C. Wang, L. Wang, and S.-K. Li, Ultrafine-grained copper prepared by spark plasma sintering process,, Materials Science and Engineering: A, vol. 476, no. 1-2, pp.201-205, (2008).

DOI: 10.1016/j.msea.2007.04.107

Google Scholar

[43] A. Fedrizzi, M. Pellizzari, and M. Zadra, Influence of particle size ratio on densification behaviour of AISI H13/AISI M3: 2 powder mixture,, Powder technology, vol. 228, pp.435-442, (2012).

DOI: 10.1016/j.powtec.2012.06.007

Google Scholar

[44] V. Maleki, H. Omidvar, and M.-R. Rahimipour, Influences of gap size and cyclic-thermal-shock treatment on mechanical properties of TLP bonded IN-738LC superalloy,, Transactions of Nonferrous Metals Society of China, vol. 28, no. 5, pp.920-930, (2018).

DOI: 10.1016/s1003-6326(18)64726-0

Google Scholar

[45] J. Tiley, O. Senkov, G. Viswanathan, S. Nag, R. Banerjee, and J. Hwang, Determination of Gamma-Prime Site Occupancies in Nickel Superalloys Using Atom Probe Tomography and X-Ray Diffraction (Preprint),, University of North Texas Denton, (2012).

DOI: 10.21236/ada563340

Google Scholar

[46] P. Mignanelli, N. Jones, M. Hardy, and H. Stone, On the time-temperature-transformation behavior of a new dual-superlattice nickel-based superalloy,, Metallurgical and Materials Transactions A, vol. 49, no. 3, pp.699-707, (2018).

DOI: 10.1007/s11661-017-4355-8

Google Scholar

[47] D. Jaramillo, R. Cuenca, and F. Juárez, Sintering comparison of NiCoCrAl-Ta powder processed by hot pressing and spark plasma,, Powder technology, vol. 221, pp.264-270, (2012).

DOI: 10.1016/j.powtec.2012.01.011

Google Scholar

[48] F. J. López and R. C. Alvarez, Development of sintered MCrAlY alloys for aeronautical applications,, in Sintering-Methods and Products: IntechOpen, (2012).

DOI: 10.5772/32714

Google Scholar

[49] J. Yu, L. Huang, and H. Luo, Effects of Cu particle size on CuSnFeNi/diamond composite processed using hybrid microwave sintering,, Powder Metallurgy, vol. 62, no. 2, pp.124-132, (2019).

DOI: 10.1080/00325899.2019.1602948

Google Scholar

[50] S. Ma et al., Effects of temperature on microstructure and mechanical properties of IN718 reinforced by reduced graphene oxide through spark plasma sintering,, Journal of Alloys and Compounds, vol. 767, pp.675-681, (2018).

DOI: 10.1016/j.jallcom.2018.07.071

Google Scholar

[51] Ö. Özgün, H. Ö. Gülsoy, R. Yilmaz, and F. Findik, Injection molding of nickel based 625 superalloy: sintering, heat treatment, microstructure and mechanical properties,, Journal of alloys and compounds, vol. 546, pp.192-207, (2013).

DOI: 10.1016/j.jallcom.2012.08.069

Google Scholar