Anthropogenic Carbon Aerosol Induced Carbonation in Reinforced Concrete: Deterioration Effects on Mechanical Properties

Article Preview

Abstract:

The effects of corrosion on the reinforced concrete structure due to carbonation affect its operation life. The research work considers a major critical component causing global warming as it studies the links between reinforced concrete deterioration mechanisms and anthropogenic carbon aerosol (black carbon soot) emissions in the atmosphere. Experimental tests were carried out to study the effect of carbonation caused by the emission of black carbon soot on mechanical properties and durability of reinforced concrete. Mass concrete and reinforced concrete prepared with Ordinary Portland cement (OPC) in water/cement ratios ranging from 0.45 to 0.65 were used to produce concrete samples. Compressive strength tests, tensile strength test, and carbonation depth tests were carried out on concrete to determine its level of deterioration following the carbonation effect. The carbonation chamber was prepared with carbon soot of different concentrations to simulate different levels of black carbon soot in the atmosphere. Results showed that concrete compressive strength was not totally affected by carbonation, but there was reduction in the tensile strength of reinforcing steel. The carbonation depth was observed to progress deeper into the concrete with a longer duration of exposure to carbonation agents in the chamber. The result of this study will serve as a guide during concrete installations.

You might also be interested in these eBooks

Info:

Pages:

139-148

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models, Endeavour. 40 (2016) 178–187. doi:https://doi.org/10.1016/j.endeavour.2016.07.002.

DOI: 10.1016/j.endeavour.2016.07.002

Google Scholar

[2] F. Bernard, D.K. Papanastasiou, R.W. Portmann, V.C. Papadimitriou, J.B. Burkholder, Atmospheric lifetimes and global warming potentials of atmospherically persistent N(CxF2x+1)3, x = 2–4, perfluoroamines, Chem. Phys. Lett. 744 (2020) 137089. doi:https://doi.org/10.1016/j.cplett.2020.137089.

DOI: 10.1016/j.cplett.2020.137089

Google Scholar

[3] IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, (2007).

DOI: 10.1080/01944363.2014.954464

Google Scholar

[4] A.D.A. Hansen, H. Rosen, T. Novakov, The aethalometer — An instrument for the real-time measurement of optical absorption by aerosol particles, Sci. Total Environ. 36 (1984) 191–196. doi:https://doi.org/10.1016/0048-9697(84)90265-1.

DOI: 10.1016/0048-9697(84)90265-1

Google Scholar

[5] T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, C.S. Zender, Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118 (2013) 5380–5552.

DOI: 10.1002/jgrd.50171

Google Scholar

[6] S.C. Anenberg, J. Schwartz, D. Shindell, M. Amann, G. Faluvegi, Z. Klimont, G. Janssens-Maenhout, L. Pozzoli, R. Van Dingenen, E. Vignati, L. Emberson, N.Z. Muller, J.J. West, M. Williams, V. Demkine, W.K. Hicks, J. Kuylenstierna, F. Raes, V. Ramanathan, Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, Environ. Health Perspect. 120 (2012) 831–839.

DOI: 10.1289/ehp.1104301

Google Scholar

[7] H. Omidvarborna, A. Kumar, D.-S. Kim, Recent studies on soot modeling for diesel combustion, Renew. Sustain. Energy Rev. 48 (2015) 635–647. doi:https://doi.org/10.1016/j.rser.2015.04.019.

DOI: 10.1016/j.rser.2015.04.019

Google Scholar

[8] C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environ. Pollut. 181 (2013) 271–286. doi:https://doi.org/10.1016/j.envpol.2013.06.009.

DOI: 10.1016/j.envpol.2013.06.009

Google Scholar

[9] E. Bastidas-Arteaga, M.G. Stewart, Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion, Struct. Saf. 52 (2015) 40–53. doi:https://doi.org/10.1016/j.strusafe.2014.10.005.

DOI: 10.1016/j.strusafe.2014.10.005

Google Scholar

[10] A. V Saetta, B.A. Schrefler, R. V Vitaliani, The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials, Cem. Concr. Res. 23 (1993) 761–772. doi:https://doi.org/10.1016/0008-8846(93)90030-D.

DOI: 10.1016/0008-8846(93)90030-d

Google Scholar

[11] M.G. Stewart, X. Wang, M.N. Nguyen, Climate change impact and risks of concrete infrastructure deterioration, Eng. Struct. 33 (2011) 1326–1337. doi:https://doi.org/10.1016/j.engstruct.2011.01.010.

DOI: 10.1016/j.engstruct.2011.01.010

Google Scholar

[12] S.A. Mangi, M.H.W. Ibrahim, N. Jamaluddin, M.F. Arshad, R.P. Jaya, Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material, Eng. Sci. Technol. an Int. J. 22 (2019) 515–522. doi:https://doi.org/10.1016/j.jestch.2018.09.001.

DOI: 10.1016/j.jestch.2018.09.001

Google Scholar

[13] L. Berredjem, N. Arabi, L. Molez, Mechanical and durability properties of concrete based on recycled coarse and fine aggregates produced from demolished concrete, Constr. Build. Mater. 246 (2020) 118421. doi:https://doi.org/10.1016/j.conbuildmat.2020.118421.

DOI: 10.1016/j.conbuildmat.2020.118421

Google Scholar

[14] İ. Demir, S. Güzelkücük, Ö. Sevim, Effects of sulfate on cement mortar with hybrid pozzolan substitution, Eng. Sci. Technol. an Int. J. 21 (2018) 275–283. doi:https://doi.org/10.1016/j.jestch.2018.04.009.

DOI: 10.1016/j.jestch.2018.04.009

Google Scholar

[15] D. Zhang, Q. Yang, M. Mao, J. Li, Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high temperature exposure, Constr. Build. Mater. 242 (2020) 118125. doi:https://doi.org/10.1016/j.conbuildmat.2020.118125.

DOI: 10.1016/j.conbuildmat.2020.118125

Google Scholar

[16] S.A. Mangi, M.H.W. Ibrahim, N. Jamaluddin, M.F. Arshad, S. Shahidan, Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawater, Eng. Sci. Technol. an Int. J. 22 (2019) 929–938. doi:https://doi.org/10.1016/j.jestch.2019.01.011.

DOI: 10.1016/j.jestch.2019.01.011

Google Scholar

[17] M. Otieno, J. Ikotun, Y. Ballim, Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment, Constr. Build. Mater. 246 (2020) 118443. doi:https://doi.org/10.1016/j.conbuildmat.2020.118443.

DOI: 10.1016/j.conbuildmat.2020.118443

Google Scholar

[18] X.-H. Wang, D. V Val, L. Zheng, M.R. Jones, Carbonation of loaded RC elements made of different concrete types: Accelerated testing and future predictions, Constr. Build. Mater. 243 (2020) 118259. doi:https://doi.org/10.1016/j.conbuildmat.2020.118259.

DOI: 10.1016/j.conbuildmat.2020.118259

Google Scholar

[19] BS 8110-1, Structural use of concrete. Code of practice for design and construction, (1997)168.

Google Scholar

[20] H. Hilsdorf, J. Kropp, Performance Criteria for Concrete Durability, CRC Press, (1995).

Google Scholar