Mechanical Properties of Granite-Gravel Porous Concrete

Article Preview

Abstract:

The need for porous concrete has become increased due its ability to control surface water, increase the rate of recharging groundwater, and reduce pollution of the ecosystem. Granite is a coarse aggregate that is quite expensive when compared with gravel in Nigeria. Therefore, this research is aimed at optimizing blended granite and gravel in the production of porous concrete. Samples of blended granite-gravel porous concrete of varying mix proportions were produced using cement to aggregate mix ratio of 1:4. The samples were tested for their porosity, workability and compressive strengths. The data collected were analyzed with the aid of Design Expert 10.0. It was observed that the optimal combination for the granite-gravel blended porous concrete is 12% granite, 88% gravel, and a water-cement ratio of 0.66%. This combination gave a porous concrete with a compressive strength of 48.4 N/mm2, percentage porosity of 6% and a compacting factor of 0.91. These values when compared to that of the control specimen revealed that the optimal mix gave a porous concrete with higher porosity, higher workability and a better compressive strength.

You might also be interested in these eBooks

Info:

Pages:

115-123

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Klee, Briefing: The cement sustainability initiative, 2004.

Google Scholar

[2] S.O. Odeyemi, O.D. Atoyebi, E.K. Ayo, Effect of Guinea Corn Husk Ash on the Mechanical Properties of Lateritic Concrete, IOP Conf. Ser. Earth Environ. Sci. 445 (2020) 1–11.

DOI: 10.1088/1755-1315/445/1/012034

Google Scholar

[3] M.A. Anifowose, A.O. Adeyemi, S.O. Odeyemi, R. Abdulwahab, R.B. Mudashiru, Comparative study of Ikirun and Osogbo Slag on concrete grade 20, Niger. J. Technol. 38 (2019) 283–288.

DOI: 10.4314/njt.v38i2.2

Google Scholar

[4] S.O. Odeyemi, R. Abdulwahab, A.A. Abdulsalam, M.A. Anifowose, Bond and Flexural Strength Characteristics of Partially Replaced Self-Compacting Palm Kernel Shell Concrete, Malaysian J. Civ. Eng. 31 (2019) 1–7.

DOI: 10.11113/mjce.v31n2.535

Google Scholar

[5] S.O. Odeyemi, M.A. Anifowose, M.O. Oyeleke, A.O. Adeyemi, S.B. Bakare, Effect of Calcium Chloride on the Compressive Strength of Concrete Produced from Three Brands of Nigerian Cement, Am. J. Civ. Eng. 3 (2015) 1–5.

Google Scholar

[6] E.J. Elizondo-Martinez, V.C. Andres-Valeri, J. Rodriguez-Hernandez, D. Castro-Fresno, Proposal of a new porous concrete dosage methodology for pavements, Materials (Basel). 12 (2019) 1–16.

DOI: 10.3390/ma12193100

Google Scholar

[7] Hariyadi, H. Tamai, Enhancing the performance of porous concrete by utilizing the pumice aggregate, Procedia Eng. 125 (2015) 732–738.

DOI: 10.1016/j.proeng.2015.11.116

Google Scholar

[8] J.T. Kevern, V.R. Schaefer, K. Wang, Mixture proportion development and performance evaluation of pervious concrete for overlay applications, ACI Mater. J. 108 (2011) 439–448.

DOI: 10.14359/51683117

Google Scholar

[9] K.H. Obla, Pervious concrete - An overview, Indian Concr. J. 84 (2010) 9–18.

Google Scholar

[10] Y. Qin, H. Yang, Z. Deng, J. He, Water permeability of pervious concrete is dependent on the applied pressure and testing methods, Adv. Mater. Sci. Eng. 2015 (2015) 1–7.

DOI: 10.1155/2015/404136

Google Scholar

[11] N.H. Abd Halim, H. Md Nor, R.P. Jaya, A. Mohamed, M.H. Wan Ibrahim, N.I. Ramli, F.M. Nazri, Permeability and Strength of Porous Concrete Paving Blocks at Different Sizes Coarse Aggregate, J. Phys. Conf. Ser. 1049 (2018).

DOI: 10.1088/1742-6596/1049/1/012028

Google Scholar

[12] S. Kubba, Chapter 6 - Choosing Materials and Products, in: Green Constr. Proj. Manag. Cost Overs., 2010: p.221–266.

Google Scholar

[13] G.C. Wang, Chapter 11 - Slag use as an aggregate in concrete and cement-based materials, in: Util. Slag Civ. Infrastruct. Constr., 2016: p.239–274.

DOI: 10.1016/b978-0-08-100381-7.00011-2

Google Scholar

[14] L. Moretti, P. Di Mascio, C. Fusco, Porous concrete for pedestrian pavements, Water (Switzerland). 11 (2019).

DOI: 10.3390/w11102105

Google Scholar

[15] A.S. Agar-Ozbek, J. Weerheijm, E. Schlangen, K. van Breugel, Investigating porous concrete with improved strength: Testing at different scales, Constr. Build. Mater. 41 (2013) 480–490.

DOI: 10.1016/j.conbuildmat.2012.12.040

Google Scholar

[16] M. Rangelov, S. Nassiri, L. Haselbach, K. Englund, Using carbon fiber composites for reinforcing pervious concrete, Constr. Build. Mater. 126 (2016) 875–885.

DOI: 10.1016/j.conbuildmat.2016.06.035

Google Scholar

[17] F. Giustozzi, Polymer-modified pervious concrete for durable and sustainable transportation infrastructures, Constr. Build. Mater. 111 (2016) 502–512.

DOI: 10.1016/j.conbuildmat.2016.02.136

Google Scholar

[18] A. Bonicelli, G.M. Arguelles, L.G.F. Pumarejo, Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads, Procedia Eng. 161 (2016) 1568–1573.

DOI: 10.1016/j.proeng.2016.08.628

Google Scholar

[19] E. Khankhaje, M.R. Salim, J. Mirza, M.W. Hussin, M. Rafieizonooz, Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate, Constr. Build. Mater. 126 (2016) 1054–1065. doi:https://doi.org/10.1016/j.conbuildmat.2016.09.010.

DOI: 10.1016/j.conbuildmat.2016.09.010

Google Scholar

[20] Y.J. Kim, A. Gaddafi, I. Yoshitake, Permeable concrete mixed with various admixtures, Mater. Des. 100 (2016) 110–119. doi:https://doi.org/10.1016/j.matdes.2016.03.109.

DOI: 10.1016/j.matdes.2016.03.109

Google Scholar

[21] J. Li, Y. Zhang, G. Liu, X. Peng, Preparation and performance evaluation of an innovative pervious concrete pavement, Constr. Build. Mater. 138 (2017) 479–485. doi:https://doi.org/10.1016/j.conbuildmat.2017.01.137.

DOI: 10.1016/j.conbuildmat.2017.01.137

Google Scholar

[22] Y. Chen, K. Wang, X. Wang, W. Zhou, Strength, fracture and fatigue of pervious concrete, Constr. Build. Mater. 42 (2013) 97–104. doi:https://doi.org/10.1016/j.conbuildmat.2013.01.006.

DOI: 10.1016/j.conbuildmat.2013.01.006

Google Scholar

[23] W. Shen, L. Shan, T. Zhang, H. Ma, Z. Cai, H. Shi, Investigation on polymer–rubber aggregate modified porous concrete, Constr. Build. Mater. 38 (2013) 667–674. doi:https://doi.org/10.1016/j.conbuildmat.2012.09.006.

DOI: 10.1016/j.conbuildmat.2012.09.006

Google Scholar

[24] M. Lee, Y. Huang, T. Chang, C. Pao, Experimental Study of Pervious Concrete Pavement, in: Emerg. Technol. Mater. Des. Rehabil. Insp. Roadw. Pavements; Am. Soc. Civ. Eng. Reston, VA, USA, 2011: p.93–99.

Google Scholar

[25] B. Rehder, K. Banh, N. Neithalath, Fracture behavior of pervious concretes: The effects of pore structure and fibers, Eng. Fract. Mech. 118 (2014) 1–16. doi:https://doi.org/10.1016/j.engfracmech.2014.01.015.

DOI: 10.1016/j.engfracmech.2014.01.015

Google Scholar

[26] R. Zhong, K. Wille, Compression response of normal and high strength pervious concrete, Constr. Build. Mater. 109 (2016) 177–187. doi:https://doi.org/10.1016/j.conbuildmat. 2016.01.051.

DOI: 10.1016/j.conbuildmat.2016.01.051

Google Scholar

[27] N.K. Sharma, P. Kumar, S. Kumar, B.S. Thomas, R.C. Gupta, Properties of concrete containing polished granite waste as partial substitution of coarse aggregate, Constr. Build. Mater. 151 (2017) 158–163.

DOI: 10.1016/j.conbuildmat.2017.06.081

Google Scholar

[28] B.I.O. Dahunsi, N.A. Sulymon, Gravel mining and supply for construction-a case study of Southwestern Nigeria, Adv. Mater. Res. 824 (2013) 44–50.

DOI: 10.4028/www.scientific.net/amr.824.44

Google Scholar

[29] N. Sulymon, O. Ofuyatan, O. Adeoye, S. Olawale, A. Busari, G. Bamigboye, J. Jolayemi, Engineering properties of concrete made from gravels obtained in Southwestern Nigeria, Cogent Eng. 4 (2017) 1–11.

DOI: 10.1080/23311916.2017.1295793

Google Scholar

[30] BS EN 1097-6:2013, Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption, British Standard Institution, London., (2013).

Google Scholar

[31] BS EN 197-1:2011, Cement-Composition, specifications and conformity criteria for common cements, British Standards, (2011).

Google Scholar

[32] BS 1881:103, Testing Concrete - Method for Determination of Compacting Factor, British Standards, (1983).

Google Scholar

[33] BS EN 12390-3:2009, Testing Hardened Concrete - Compressive Strength of Test Specimens, British Standards, (2009).

Google Scholar

[34] BS EN 12390-8:2000, British Standard Testing hardened concrete Ð Part 8 : Depth of penetration of water, (2003).

Google Scholar