[1]
R.S. Vajjha, D.K. Das; A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International journal of heat and mass transfer 55 15-16 (2012) 4063-4078.
DOI: 10.1016/j.ijheatmasstransfer.2012.03.048
Google Scholar
[2]
B. Mahanthesh, B. J. Gireesha, R. S. Reddy Gorla; Nanoparticles effect on 3D flow, heat and mass transfer of nanofluid with nonlinear radiation, thermal-diffusion and diffusion-thermo effects, Journal of Nanofluids 5.5 (2016) 669-678.
DOI: 10.1166/jon.2016.1257
Google Scholar
[3]
B.Mahanthesh, S.S Nagavangala, G. Lorenzini; Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk, Journal of Thermal Analysis and Calorimetry (2020) 1-9.
DOI: 10.1007/s10973-020-09927-x
Google Scholar
[4]
J. Buongiorno; Convective Transport in Nanofluids, Journal of Heat Transfer 128 (2006) 240-250.
DOI: 10.1115/1.2150834
Google Scholar
[5]
Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui; A review on natural convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews 16 (7) (2012) 5363–5378.
DOI: 10.1016/j.rser.2012.04.003
Google Scholar
[6]
T.G. Myers, H. Ribera, V. Cregan; Does mathematics contribute to the nanofluid debate?, International Journal of Heat and Mass Transfer 111 (2017) 279-288.
DOI: 10.1016/j.ijheatmasstransfer.2017.03.118
Google Scholar
[7]
R.A. Mahdi, H.A. Mohammed, K.M. Munisamy, N.H. Saeid; Review of convection heat transfer and fluid flow in porous media with nanofluid, Renewable and Sustainable Energy Reviews 41 (2015) 715-734.
DOI: 10.1016/j.rser.2014.08.040
Google Scholar
[8]
M. Chandrasekar, S. Suresh, T. S. kumar; Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review, Renewable and Sustainable Energy Reviews 16 (2012) 3917-3938.
DOI: 10.1016/j.rser.2012.03.013
Google Scholar
[9]
S. Kumar, S.K. Prasad, J. Banerjee; Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model, Applied Mathematical Modelling 34 (2010) 573-592.
DOI: 10.1016/j.apm.2009.06.026
Google Scholar
[10]
P. Cheng; Thermal dispersion effects on non-Darcy convection flows in a saturated porous medium, Letters in Heat and Mass Transfer 8 (1981) 267-270.
DOI: 10.1016/0094-4548(81)90041-2
Google Scholar
[11]
J.T. Hong, C.L. Tien; Analysis of thermal dispersion effect on vertical plate natural convection in porous media, International Journal of Heat and Mass Transfer 30 (1987) 143-150.
DOI: 10.1016/0017-9310(87)90067-6
Google Scholar
[12]
A. Mokmeli, M. Saffar- Avval; Prediction of nanofluid convective heat transfer using the dispersion model, International Journal of Thermal Sciences 49 (2010) 471-478.
DOI: 10.1016/j.ijthermalsci.2009.09.005
Google Scholar
[13]
A.V. Kuznetsov, D.A. Nield; Natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences 49 (2010) 243-247.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[14]
A.V. Kuznetsov, D.A. Nield; Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate, International Journal of Thermal Sciences 50 (2011) 712-717.
DOI: 10.1016/j.ijthermalsci.2011.01.003
Google Scholar
[15]
D.A. Nield, A.V. Kuznetsov; The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, International Journal of Heat and Mass Transfer 52 (2009) 5792–5795.
DOI: 10.1016/j.ijheatmasstransfer.2009.07.024
Google Scholar
[16]
D.A. Nield, A.V. Kuznetsov; The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid, International Journal of Heat and Mass Transfer 54 (2011) 374–378.
DOI: 10.1016/j.ijheatmasstransfer.2010.09.034
Google Scholar
[17]
B. Mahanthesh, J. Mackolil; Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic Boussinesq approximation: sensitivity analysis, International Communications in Heat and Mass Transfer 120 (2021) 105040.
DOI: 10.1016/j.icheatmasstransfer.2020.105040
Google Scholar
[18]
A.V. Kuznetsov, D.A. Nield; Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, International Journal of Thermal Sciences 77 (2014) 126-129.
DOI: 10.1016/j.ijthermalsci.2013.10.007
Google Scholar
[19]
A.V. Kuznetsov, D.A. Nield; The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model, International Journal of Heat and Mass Transfer 65 (2013) 682–685.
DOI: 10.1016/j.ijheatmasstransfer.2013.06.054
Google Scholar
[20]
D.A. Nield, A.V. Kuznetsov; Thermal instability in a porous medium layer saturated by a nanofluid: A revised model, International Journal of Heat and Mass Transfer 68 (2014) 211–214.
DOI: 10.1016/j.ijheatmasstransfer.2013.09.026
Google Scholar
[21]
M. Khan, W. A. Khan; MHD boundary layer flow of a power-law nanofluid with new mass flux condition, AIP Advances 6.2 (2016) 025211.
DOI: 10.1063/1.4942201
Google Scholar
[22]
N.A. Halim, U.H Rizwan, N. F. M. Noor; Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface, Meccanica 52.7 (2017) 1527-1539.
DOI: 10.1007/s11012-016-0517-9
Google Scholar
[23]
K.U. Rehman, M. Awais, A. Hussain, N. Kousar, M. Y. Malik; Mathematical analysis on MHD Prandtl‐Eyring nanofluid new mass flux conditions, Mathematical Methods in the Applied Sciences 42 (1) (2019) 24-38.
DOI: 10.1002/mma.5319
Google Scholar
[24]
F. Awad, N.A.H. Haroun, P. Sibanda, M. Khumalo; On couple stress effects on unsteady nanofluid flow over stretching surfaces with vanishing nanoparticle flux at the wall, Journal of Applied Fluid Mechanics 9.4 (2016) 1937-1944.
DOI: 10.18869/acadpub.jafm.68.235.24940
Google Scholar
[25]
M. Ahmad, S.A. Shehzad, A. Iqbal, A., M. Taj; Time-dependent three-dimensional Oldroyd-B nanofluid flow due to bidirectional movement of surface with zero mass flux, Advances in Mechanical Engineering, 12(4) (2020) 1687814020913783.
DOI: 10.1177/1687814020913783
Google Scholar
[26]
M. Abd El-Aziz, A. A. Afify; Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux, Thermophysics and Aeromechanics 26.3 (2019) 429-443.
DOI: 10.1134/s0869864319030119
Google Scholar
[27]
B. Mahanthesh, S.A. Shehzad, J. Mackolil, N.S. Shashikumar; Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: A sensitivity analysis, International Journal of Heat and Mass Transfer 171 (2021) 121081.
DOI: 10.1016/j.ijheatmasstransfer.2021.121081
Google Scholar
[28]
A.M. Bouaziz, S. Hanini; Double dispersion for double diffusive boundary layer in non-Darcy saturated porous medium filled by a nanofluid, Journal of Mechanics 32.4 (2016) 441-451.
DOI: 10.1017/jmech.2016.18
Google Scholar
[29]
O.D Makinde, A. Aziz; MHD mixed convection from a vertical plate embedded in porous medium with a convective boundary condition, International Journal of Thermal Sciences 49 (2010) 1813-1820.
DOI: 10.1016/j.ijthermalsci.2010.05.015
Google Scholar
[30]
J.C Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons, (2016).
Google Scholar
[31]
J. Kierzenka, L.F.A Shampine; A BVP solver based on residual control and the Maltab PSE, ACM Transactions on Mathematical Software (TOMS) 27 3 (2001) 299-316.
DOI: 10.1145/502800.502801
Google Scholar