Numerical Simulation of Stress Relaxation and Creep Response of X20 Steam Piping under Diverse Operating Conditions

Article Preview

Abstract:

The creep response and stress relaxation of X20 CrMoV12-1 steam piping under diverse operating conditions were simulated using finite element analysis (FEA) code, Abaqus alongside fe-safe/Turbolife software. In the study, steady-state creep and creep analysis characterized by 24 hours daily cycle consisting of a total of 6 hours peak, 4 hours transient and 14 hours off-peak period was considered. Modified hyperbolic sine creep model used in the analysis was implemented in Abaqus via a special creep user-subroutine to compute the stress relaxation and creep behaviour, while the useful service life and creep damage was estimated using fe-safe/Turbolife. The optimum creep strain, stress, damage, and worst life were found at the intrados of the piping, with the steady-state analysis having a higher useful creep life and slower creep damage accumulation. Furthermore, slower stress relaxation with faster damage accumulation was observed in the analysis involving cycles. Finally, a good agreement was obtained between the analytical calculated and simulated rates of the piping.

You might also be interested in these eBooks

Info:

Pages:

19-32

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Auerkari, J. Salonen, S. Holmström, A. Laukkanen, J. Rantala, and R. Nikkarila, Creep damage and long term life modelling of an X20 steam line component,, Engineering Failure Analysis, vol. 35, pp.508-515, 2013/12/15/ (2013).

DOI: 10.1016/j.engfailanal.2013.05.008

Google Scholar

[2] S. J. Brett, S. Holmström, J. Hald, U. Borg, J. S. Aakjær, and R. van Vulpen, Creep damage development in welded X20 and P91,, (2011).

Google Scholar

[3] Z.-F. Hu, Heat-resistant steels, microstructure evolution and life assessment in power plants,, Thermal power plants, pp.195-226, (2012).

DOI: 10.5772/26766

Google Scholar

[4] J. Storesund, K. Borggreen, and W. Zang, Creep behaviour and lifetime of large welds in X20 CrMOV 12 1—results based on simulation and inspection,, International journal of pressure vessels piping, vol. 83, no. 11-12, pp.875-883, (2006).

DOI: 10.1016/j.ijpvp.2006.08.015

Google Scholar

[5] D. Liu, H. Li, and Y. J. M. P. i. E. Liu, Numerical simulation of creep damage and life prediction of superalloy turbine blade,, vol. 2015, (2015).

DOI: 10.1155/2015/732502

Google Scholar

[6] B. Wilshire and R. Evans, Introduction to Creep; the Institute of Materials: London,, ed: UK, (1993).

Google Scholar

[7] J. Beddoes and T. Mohammadi, Comparison of stress relaxation and creep strain rates for the superalloy IN738LC,, The Journal of Strain Analysis for Engineering Design, vol. 45, no. 8, pp.587-592, (2010).

DOI: 10.1177/030932471004500805

Google Scholar

[8] A. Pagliarello and J. Beddoes, The stress relaxation and creep behaviour of a manganese-stabilized austenitic stainless steel,, The Journal of Strain Analysis for Engineering Design, vol. 44, no. 3, pp.201-209, (2009).

DOI: 10.1243/03093247jsa476

Google Scholar

[9] M. Gedeon, Factors affecting stress relaxation and creep,, Tech. Tidbits, vol. 13, (2010).

Google Scholar

[10] R. Mustata and D. Hayhurst, Creep constitutive equations for a 0.5 Cr 0.5 Mo 0.25 V ferritic steel in the temperature range 565 C–675 C,, International Journal of pressure vessels piping, vol. 82, no. 5, pp.363-372, (2005).

DOI: 10.1016/j.ijpvp.2004.11.002

Google Scholar

[11] R. Hayhurst, R. Mustata, and D. Hayhurst, Creep constitutive equations for parent, Type IV, R-HAZ, CG-HAZ and weld material in the range 565–640 C for Cr–Mo–V weldments,, International journal of pressure vessels and piping, vol. 82, no. 2, pp.137-144, (2005).

DOI: 10.1016/j.ijpvp.2004.07.014

Google Scholar

[12] D. Hayhurst, F. Vakili-Tahami, and J. Zhou, Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550 C,, International journal of pressure vessels piping, vol. 80, no. 2, pp.97-109, (2003).

DOI: 10.1016/s0308-0161(03)00027-9

Google Scholar

[13] Y. Ma, S. Shim, and K. Yoon, Assessment of power law creep constants of Gr91 steel using small punch creep tests,, Fatigue Fracture of Engineering Materials Structures, vol. 32, no. 12, pp.951-960, (2009).

DOI: 10.1111/j.1460-2695.2009.01394.x

Google Scholar

[14] A. A. Saad, T. Hyde, W. Sun, C. J. Hyde, and D. W. Tanner, Characterization of viscoplasticity behaviour of P91 and P92 power plant steels,, International Journal of Pressure Vessels Piping, vol. 111, pp.246-252, (2013).

DOI: 10.1016/j.ijpvp.2013.08.001

Google Scholar

[15] J. Bolton, Analysis of structures based on a characteristic-strain model of creep,, International journal of pressure vessels and piping, vol. 85, no. 1-2, pp.108-116, (2008).

DOI: 10.1016/j.ijpvp.2007.06.013

Google Scholar

[16] W. Shen, C. Zhang, L. Zhang, Y. Yang, and Z. Zhu, Stress Relaxation Behaviour and Creep Constitutive Equations of SA302Gr. C Low-Alloy Steel,, High Temperature Materials Processes, vol. 37, no. 9-10, pp.857-862, (2018).

DOI: 10.1515/htmp-2017-0090

Google Scholar

[17] M. J. S. C. Marc, Volume D (User Subroutines and Special Routines), MSC,, (2012).

Google Scholar

[18] S. Salifu, D. Desai, and S. Kok, Creep–fatigue interaction of P91 steam piping subjected to typical start-up and shutdown cycles,, Journal of Failure Analysis and Prevention, (2020).

DOI: 10.1007/s11668-020-00908-8

Google Scholar

[19] S. Salifu, D. Desai, and S. Kok, Numerical simulation and creep-life prediction of X20 steam piping,, Materials Today: Proceedings, (2020).

DOI: 10.1016/j.matpr.2020.05.125

Google Scholar

[20] A. Kandil, A. El-Kady, and A. El-Kafrawy, Transient thermal stress analysis of thick-walled cylinders,, International journal of mechanical sciences, vol. 37, no. 7, pp.721-732, (1995).

DOI: 10.1016/0020-7403(94)00105-s

Google Scholar

[21] V. Pesonen, Online Creep and Fatigue Monitoring in Power Plants,, (2014).

Google Scholar

[22] S. Salifu, D. Desai, and S. Kok, Prediction and comparison of creep behavior of X20 steam plant piping network with different phenomenological creep models,, Journal of Materials Engineering and Performance, pp.1-14, (2020).

DOI: 10.1007/s11665-020-05235-5

Google Scholar

[23] B. Kanlıkama, A. Abuşoğlu, and İ. H. Güzelbey, Coupled thermoelastic analysis of thick-walled pressurized cylinders,, International Journal of Energy and Power Engineering, vol. 2, no. 2, pp.60-68, (2013).

DOI: 10.11648/j.ijepe.20130202.15

Google Scholar

[24] J. M. Montes, F. G. Cuevas, and J. Cintas, New creep law,, Materials Science and Technology, vol. 28, no. 3, pp.377-379, (2012).

DOI: 10.1179/1743284711y.0000000029

Google Scholar

[25] E. L. Robinson, Effect of temperature variation on the long-time rupture strength of steels,, Trans. ASME, vol. 77, (1952).

Google Scholar

[26] D. Liu, D. J. Pons, and E. Wong, Creep-integrated fatigue equation for metals,, International Journal of Fatigue, vol. 98, pp.167-175, (2017).

DOI: 10.1016/j.ijfatigue.2016.11.030

Google Scholar

[27] O. F. Ogunbiyi, S. A. Salifu, T. Jamiru, E. R. Sadiku, and O. T. Adesina, Thermo-mechanical simulation of steam turbine blade with spark plasma sintering fabricated Inconel 738LC superalloy properties,, vol. 655, p.012046: IOP Publishing.

DOI: 10.1088/1757-899x/655/1/012046

Google Scholar

[28] T. Rasiawan, The influence of prior creep damage on the fracture localisation in X20 CrMoV12-1 cross-weld creep tests," Master,s Dissertation, University of Cape Town, (2017).

Google Scholar

[29] Pyrogel-XTE-Datasheet, High-Performance Aerogel Insulation for Industrial and Commercial Applications.,.

Google Scholar

[30] S. Salifu, D. Desai, S. Kok, and O. Ogunbiyi, Thermo-mechanical stress simulation of unconstrained region of straight X20 steam pipe,, Procedia Manufacturing, vol. 35, pp.1330-1336, (2019).

DOI: 10.1016/j.promfg.2019.05.021

Google Scholar

[31] S. Salifu, D. Desai, F. Fameso, O. Ogunbiyi, S. Jeje, and A. Rominiyi, Thermo-mechanical analysis of bolted X20 steam pipe-flange assembly,, Materials Today: Proceedings, (2020).

DOI: 10.1016/j.matpr.2020.04.882

Google Scholar

[32] K. Naumenko, H. Altenbach, and A. Kutschke, A constitutive model for creep and long-term strength in advanced heat resistant steels and structures,, Journal of Transition, vol. 2, no. 3, p.4, (2009).

Google Scholar

[33] M. P. d. Matweb. (2019, 17/09/2019). X20Cr13 Stainless Steel for medical instruments. Available: http://www.matweb.com/search/datasheet_print.aspx?matguid=81346c1935fc4e03bf5e1ee21d20c218.

Google Scholar

[34] S. Salifu, D. Desai, and S. Kok, Numerical investigation of creep-fatigue interaction of straight P91 steam pipe subjected to start-up and shutdown cycles,, Materials Today: Proceedings, (2020).

DOI: 10.1016/j.matpr.2020.05.613

Google Scholar

[35] K. Naumenko, H. Altenbach, and A. J. t. Kutschke, A constitutive model for creep and long-term strength in advanced heat resistant steels and structures,, vol. 2, no. 3, p.4, (2009).

Google Scholar

[36] S. D. Systemes, ABAQUS 6.13 User's manual,, Dassault Systems, Providence, RI, (2013).

Google Scholar

[37] S. Salifu, D. Desai, and S. Kok, Comparative evaluation of creep response of X20 and P91 steam piping networks in operation,, The International Journal of Advanced Manufacturing Technology, vol. 109, no. 7, pp.1987-1996, (2020).

DOI: 10.1007/s00170-020-05727-7

Google Scholar

[38] D. S. Systemes, fe-safe/TURBOlife user manual,, Dassault Systems, Providence, RI, p.122, (2017).

Google Scholar

[39] T. M. Junisbekov, V. N. Kestelʹman, and N. I. Malinin, Stress relaxation in viscoelastic materials. Science Pub Incorporated, (2003).

Google Scholar

[40] S. Salifu, D. Desai, and S. Kok, Influence of Diverse Operating Cycles on the Useful Creep Life of P92 Steam Piping,, Journal of Failure Analysis and Prevention, pp.1-10, (2021).

DOI: 10.1007/s11668-021-01144-4

Google Scholar

[41] R. S. Rikard Norling, Jan Storesund, Effect of stress relaxation on creep of steam pipe system,, Energiforsk, (2016).

Google Scholar