Dredged Dam Raw Sediments Geotechnical Characterization for Beneficial Use in Road Construction

Article Preview

Abstract:

The present research work aims to evaluate the feasibility of reusing raw dredged sediments from the Dam of Fergoug (northwestern Algeria) as an alternative material for road construction. These sediments were added to volcanic tuff from the quarry located near the village of Sidi Ali Cherif, in the town of Sig (northwestern Algeria), with contents of 5, 10, 15, 20 and 25% by total weight of tuff. To achieve this goal, sediments were extracted from Fergoug dam and an experimental program was carried out to study the possibility of valorizing these sediments to be used in road construction. The soils were subjected to a series of physical and chemical tests. Their physical properties, including the Atterberg limits, specific gravity, grain size distribution, and organic content were determined according to standard methods. Then, their chemical properties, including pH, elementary chemical composition using the X-ray fluorescence spectrometry and mineralogical composition identified by X-ray diffraction, were obtained by means of standard methods. The first experimental results from the tested formulations demonstrated the feasibility of reusing the valorized dredged sediments in road construction. Afterwards, the modified Proctor and ICBR tests were carried out, and the results obtained turned out to be quite satisfactory.

You might also be interested in these eBooks

Info:

Pages:

81-98

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Safer, N. Belas, O. Belaribi, K. Belguesmia, N. Bouhamou, A. Mebrouki, Valorization of Dredged Sediments as a Component of Vibrated Concrete: Durability of These Concretes against Sulfuric Acid Attack, Int. J. Concr. Struct. Mater. 12:44 (2018).

DOI: 10.1186/s40069-018-0270-7

Google Scholar

[2] B. Barthès, E. Roose, Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels, Catena. 47(2) (2002)133-149.

DOI: 10.1016/s0341-8162(01)00180-1

Google Scholar

[3] Z.Q. Huang, T.L. Chen, A.M. Wang, Main Engineering Geological Problems and Evaluation on the Reservoir Engineering of Yellow River Water Diversion and Irrigation Area, Applied Mechanics and Materials  580-583 (2014) 2071-2073 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/amm.580-583.2071

Google Scholar

[4] B. Remini, A. Toumi, The Beni Haroun Reservoir (Algeria) Is It Threatened By Siltation? Larhyss Journal 14(1) (2000) 249-263.

Google Scholar

[5] A. Terfous, A. Megnounif, A. Bouanani, Étude du transport solide en suspension dans l'Oued Mouilah (Nord-Ouest Algérien) [In French], Rev. Sci. Eau 14(2) (2001) 173-185.

DOI: 10.7202/705416ar

Google Scholar

[6] O. Elahcene, A. Terfous, B. Remini, A. Ghenaim, J.P. Poulet, Etude de la dynamique sédimentaire dans le bassin versant de l'Oued Bellah (Algérie), Hydrol Sci J. 58(1) (2013) 1-13.

DOI: 10.1080/02626667.2012.742530

Google Scholar

[7] J.L. Probst, P. Amiotte-Suchet, Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa), Hydrol. Sci. J. 37(6) (1992) 621-637.

DOI: 10.1080/02626669209492628

Google Scholar

[8] A.K. Toubal, M. Achite, S. Ouillon, Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria, Environ. Monit. Assess. 190(4) (2018) 210.

DOI: 10.1007/s10661-018-6580-z

Google Scholar

[9] L. Laoufi, Y. Senhadji, A. Benazzouk, Valorization of mud Fergoug dam in manufacturing mortars, Case Stud. Constr. Mater. 5 (2016) 26-38.

DOI: 10.1016/j.cscm.2016.06.002

Google Scholar

[10] A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Improvement of the mechanical performance of Fergoug dam sediments treated for reuse in road engineering, MATEC Web Conf 149 (2018) 01031.

DOI: 10.1051/matecconf/201814901031

Google Scholar

[11] A. Kashefighasemabadi, A. Karbassi, M. Tabatabaee, A.M. Dehabadi, Development of soil pollution risk index in the vicinity of a waste dam in Chadormalu iron ore mine, Int. J. Environ. Sci. Technol. 16(12) (2019) 8485-8494.

DOI: 10.1007/s13762-019-02330-6

Google Scholar

[12] H. Sellaf, H. Trouzine, A. Asroun, Assessment of the Performance of Sediments and Scrap Rubber Layers to Filter the Leachate of Landfills, Int. J. Eng. Res. Afr. 35 (2018) 162-174 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/jera.35.162

Google Scholar

[13] D.X. Wang, R. Zentar, N. Abriak, W.Y. Xu, Effect of Fly Ash and Lime Treatment on Mechanical and Swell Properties of Dunkirk Dredged Sediments, Adv. Mat. Res. 250-253 (2011) 755-760 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/amr.250-253.755

Google Scholar

[14] N. Ramli, M.H.H. Jumali, W.S.W. Salim, Fundamental Characterisation of Dredged Marine Sediments from Kuala Perlis Jetty by XRF, XRD and FTIR, Adv. Mat. Res. 620 (2012) 469-473 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/amr.620.469

Google Scholar

[15] I. Laoufi, L. Laoufi, Y. Senhadji, A. Benazzouk, Study of Mortars Made with Natural and Artificial Pozzolans, J. Mater. Eng. Struct. 6(3) (2019) 427-442.

Google Scholar

[16] J.L. Ooi, L.W. Ean, B.S. Mohammed, M.A. Malek, L.S. Wong, C.W. Tang, H.Q. Chua. Study on the Properties of Compressed Bricks Using Cameron Highlands Reservoir Sediment as Primary Material, Appl. Mech. Mater. 710 (2015) 25-29 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/amm.710.25

Google Scholar

[17] F. Mostefa, N. Bouhamou, H.A. Mesbah, S. Aggoune, D. Mekhatria, Sedimentary Clays as Geopolymer Precursor, J. Eng. Res. Afr. 39 (2017) 97-111 https://www.scientific.net/.

DOI: 10.4028/www.scientific.net/jera.39.97

Google Scholar

[18] I. Goual, M.S. Goual S. Taibi, N. Abou-Bekr, Amélioration des propriétés d'un tuf naturel utilisé en technique routière saharienne par ajout d'un sable calcaire [In French], Eur. J. Environ. Civil Eng. 16(6) (2012) 744-763.

DOI: 10.1080/19648189.2012.667653

Google Scholar

[19] M. Morsli, B. Abderrahim, B. Mahmoud, G. Michel, Etude du durcissement d'un tuf d'encroûtement de Hassi-Messaoud (Algérie) [In French], Eur. J. Environ. Civil Eng. 11(9–10) (2007) 1219-1240.

DOI: 10.3166/regc.11.1219-1240

Google Scholar

[20] A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Valorisation of Natural Waste: Dam Sludge for Road Construction, Nature Environment and Pollution Technology. 19(3) (2020) 1075-1083.

DOI: 10.46488/nept.2020.v19i03.018

Google Scholar

[21] ISO 17892-4: Geotechnical investigation and testing, Laboratory testing of soil. Part 4: determination of particle size distribution, combination of sieving and sedimentation, International Organization for Standardization. (2004).

Google Scholar

[22] ISO 17892-12: Geotechnical investigation and testing -- Laboratory testing of soil. Part 12: Determination of Atterberg limits, International Organization for Standardization, (2004).

Google Scholar

[23] ISO 17892-3: Geotechnical investigation and testing -- Laboratory testing of soil -- Part 3: Determination of particle density, Pycnometer method. International Organization for Standardization. (2004).

Google Scholar

[24] B. Remini, D. Bensafia, Envasement des barrages dans les régions arides. Exemples algeriens [In French], Larhyss journal, 27 (2016) 63-90.

Google Scholar

[25] N.T. Thanh, Valorization of marine and fluvial sediments in road construction," M.S. thesis, école des mines de Douai, France (2009).

Google Scholar

[26] A. Baran, M. Mierzwa-Hersztek, K. Gondek, M. Tarnawski, M. Szara, O. Gorczyca, T. Koniarz, The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment, Environ. Geochem. Health. 41 (2019) 2893-2910.

DOI: 10.1007/s10653-019-00359-7

Google Scholar

[27] ISO 10390: Soil quality - Chemical characteristics of soils. Determination of pH, International Organization for Standardization, (2005).

Google Scholar

[28] ISO 10694: Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis), International Organization for Standardization, (1995).

Google Scholar

[29] A. Oyediran, H.F. Durojaiye, Variability in the geotechnical properties of some residual clay soils from south western Nigeria, Int. J. sci. eng. res. 2(9) (2011) 1-6.

DOI: 10.14299/ijser.2011.09.001

Google Scholar

[30] P.P. Raj, Soil Mechanics and Foundation Engineering, Dorling Kindersley (India) Pvt, Ltd., New Delhi, (2012).

Google Scholar

[31] J.E. Bowles, Engineering Properties of Soils and their Measurements, 4th edition, McGraw Hill Education (India), Private Limited, New Delhi, (2012).

Google Scholar

[32] EN 933-9: Tests for the Geometrical Properties of Aggregates - Part 9: Assessment of Fines—Methylene Blue Test, European Committee for Standardization, Belgium, 2009+A1. (2013).

DOI: 10.3403/01531886u

Google Scholar

[33] LCPC-SETRA: Realization of embakments and subgrade layers, Technical Guide, Fascicule II, Annexes techniques (1992).

Google Scholar

[34] EN 1744-1: Tests for chemical properties of aggregates - Part 1: Chemical analysis, European Committee for Standardization, Brussels, Belgium, (2009).

Google Scholar

[35] S.R. Kaniraj, Design Aids in Soil Mechanics and Foundation Engineering, McGraw Hill Education (India) Private Limited, New Delhi, (1988).

Google Scholar

[36] K.V.S. Apparao, V.C.S. Rao, Soil Testing Laboratory Manual and Question Bank, Universal Science Press, New Delhi, (1995).

Google Scholar

[37] EN 13286-2: Unbound and hydraulically bound mixtures - Part 2: Test methods for laboratory reference density and water content - Proctor compaction, European Committee for Standardization, Brussels, Belgium, (2012).

DOI: 10.3403/30212169

Google Scholar

[38] EN 13286-47: Unbound and hydraulically bound mixtures - Part 47: Test method for the determination of the California bearing Ratio, Immediate Bearing Index and linear swelling", European Committee for Standardization, Brussels, Belgium, (2004).

DOI: 10.3403/02993050

Google Scholar

[39] LCPC-SETRA: Guide technique pour la réalisation des remblais et des couches de forme. Editions du SETRA-LCPC, Fascicules I and II, (2000) 98-102.

Google Scholar

[40] F. Ye, X. Huang, D. Zhang, L. Tian, Y. Zeng, Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes, Int. J. Environ. Sci. 24(4) (2012) 579-588.

DOI: 10.1016/s1001-0742(11)60783-3

Google Scholar

[41] R. Achour, N. Abriak, R. Zentar, P. Rivard, P. Gregoire, Valorization of unauthorized sea disposal dredged sediments as a road foundation material, Environ. Technol. 35(16) (2014) 1997-2007.

DOI: 10.1080/09593330.2014.889758

Google Scholar

[42] M. Le Guern, M. Boutouil, L. Saussaye, D. Lescarmontier, Geotechnical and mechanical characterisation of three marine dredged sediments treated with hydraulic binders. Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction, Rostock, (2014).

Google Scholar

[43] S. Kamali, F. Bernard, N. Abriak, P. Degrugilliers, Marine dredged sediments as new materials resource for road construction, Waste Manag. 28 (2008) 919-928.

DOI: 10.1016/j.wasman.2007.03.027

Google Scholar

[44] H. Marouf, A. Semcha, N. Mahmoudi, N. Bouhamou, M. Benzerzour, W. Maherzi, Experimental study on the reuse of a dredging sludge from west of Algeria in brick fabrication, J. Mater. Eng. Struct. 5 (2018) 163-172.

Google Scholar

[45] M.A. Bourabah, B. Serbah, N. Abou-Bekr, Geotechnical characterization of waste dredged sediments for Algerian damsn In book: Coupled Phenomena in Environmental Geotechnics – Manassero et al. (Eds). Taylor & Francis Group, London, (2013) 299-305.

DOI: 10.1201/b15004-34

Google Scholar

[46] A.A. Belloo, Geotechnical evaluation of reddish brown tropical soils, Geotech. Geol. Eng. 30(2) (2012) 481-498.

DOI: 10.1007/s10706-011-9482-1

Google Scholar

[47] ASTM D2487: Standard Test Methods for Classification of Soils for Engineering Purposes (Unified Soil Classification System, USCS), American Society for Testing and Materials, (2017).

Google Scholar

[48] L.K. Kreirzti, L. Benamara, N.E. Boudjenane, Valorization of dredging sediments of dam BOUHNIFIA in ceramic, J. Aust. Ceram. Soc. 55 (2019) 1081-1089.

DOI: 10.1007/s41779-019-00321-x

Google Scholar

[49] N. Junakova, J. Junak, Sustainable Use of Reservoir Sediment through Partial Application in Building Material, Sustainability. 9(5) (2017) 852.

DOI: 10.3390/su9050852

Google Scholar

[50] N. Junakova, J. Junak, The effect of sediment treatment on strength and water absorption capacity of sediment based concrete, IOP Conf Ser: Mater. Sci. Eng. 385 (2018) 1-5.

DOI: 10.1088/1757-899x/385/1/012023

Google Scholar

[51] NF P18-011: Afnor. Bétons – Classification des environnements agressifs [In French]. French standard. (1992).

Google Scholar

[52] A.W. Skempton, The Colloidal activity of clays. Proc. 3rd Int. Conf. Soil Mechanics and Foundation Engineering (London), 1 (1953) 47-61.

Google Scholar

[53] P. Di Mascio, L. Moretti, A. Capannolo, Concrete block pavements in urban and local roads: Analysis of stress-strain condition and proposal for a catalogue, J. Traffic Transp. Eng. Engl. Ed. 6(6) (2019) 557-566.

DOI: 10.1016/j.jtte.2018.06.003

Google Scholar

[54] O. Boudlal, N. Ferri, K. Khattaoui, S. Idres, R. Ouerd, Valorisation of Taksebt dam sediments (Algeria) in road construction, Journées Nationales de Géotechnique et de Géologie de l'Ingénieur – Nancy, France, (2016).

Google Scholar

[55] A.F. Cabalar, W.S. Mustafa, Behaviour of sand–clay mixtures for road pavement subgrade, Int. J. Pavement Eng. 18(8) (2015) 714-726.

DOI: 10.1080/10298436.2015.1121782

Google Scholar

[56] Assises de Chaussées : Guide d'application des normes pour le réseau routier national [In French], Paris: LCPC Edition, (1998).

Google Scholar

[57] K. Fletcher Hazirbaba, Large-scale direct shear and CBR performance of geofibre-reinforced sand, Road Mater. Pavement Des. 19(6) (2018) 1350-1371.

DOI: 10.1080/14680629.2017.1310667

Google Scholar

[58] A.F. Cabalar, Z. Karabash, W.S. Mustafa, Stabilizing a clay using tire buffings and lime, Road Mater. Pavement Des. 15(4) (2014) 872-891.

DOI: 10.1080/14680629.2014.939697

Google Scholar

[59] U. Kim, D. Kim, L. Zhuang, Influence of fines content on the undrained cyclic shear strength of sand–clay mixtures, Soil Dyn. Earthq. Eng. 83 (2016) 124-134.

DOI: 10.1016/j.soildyn.2016.01.015

Google Scholar

[60] M. Akacem, R. Zentar, B. Mekerta, A. Sadok, O.H. Moulay, Co-valorisation of Local Materials Tuffs and Dune Sands in Construction of Roads, Geotech. Geol. Eng. 38 (2020) 435–447.

DOI: 10.1007/s10706-019-01035-4

Google Scholar

[61] E.G. Daheur, I. Goual, S. Taibi, R. Mitiche-Kettab, Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation), Geotech. Geol. Eng. 37(3) (2019) 1687-1701.

DOI: 10.1007/s10706-018-0715-4

Google Scholar

[62] A. Puech, J.P. Beuce, J.L. Colliat, Advances in the design of piles driven into non-cemented to weakly cemented carbonate formations, Proceedings of the International Conference on Calcareous Sediments, Perth, Australia 1 (1988) 305-312.

Google Scholar