[1]
O. Safer, N. Belas, O. Belaribi, K. Belguesmia, N. Bouhamou, A. Mebrouki, Valorization of Dredged Sediments as a Component of Vibrated Concrete: Durability of These Concretes against Sulfuric Acid Attack, Int. J. Concr. Struct. Mater. 12:44 (2018).
DOI: 10.1186/s40069-018-0270-7
Google Scholar
[2]
B. Barthès, E. Roose, Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels, Catena. 47(2) (2002)133-149.
DOI: 10.1016/s0341-8162(01)00180-1
Google Scholar
[3]
Z.Q. Huang, T.L. Chen, A.M. Wang, Main Engineering Geological Problems and Evaluation on the Reservoir Engineering of Yellow River Water Diversion and Irrigation Area, Applied Mechanics and Materials 580-583 (2014) 2071-2073 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/amm.580-583.2071
Google Scholar
[4]
B. Remini, A. Toumi, The Beni Haroun Reservoir (Algeria) Is It Threatened By Siltation? Larhyss Journal 14(1) (2000) 249-263.
Google Scholar
[5]
A. Terfous, A. Megnounif, A. Bouanani, Étude du transport solide en suspension dans l'Oued Mouilah (Nord-Ouest Algérien) [In French], Rev. Sci. Eau 14(2) (2001) 173-185.
DOI: 10.7202/705416ar
Google Scholar
[6]
O. Elahcene, A. Terfous, B. Remini, A. Ghenaim, J.P. Poulet, Etude de la dynamique sédimentaire dans le bassin versant de l'Oued Bellah (Algérie), Hydrol Sci J. 58(1) (2013) 1-13.
DOI: 10.1080/02626667.2012.742530
Google Scholar
[7]
J.L. Probst, P. Amiotte-Suchet, Fluvial suspended sediment transport and mechanical erosion in the Maghreb (North Africa), Hydrol. Sci. J. 37(6) (1992) 621-637.
DOI: 10.1080/02626669209492628
Google Scholar
[8]
A.K. Toubal, M. Achite, S. Ouillon, Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria, Environ. Monit. Assess. 190(4) (2018) 210.
DOI: 10.1007/s10661-018-6580-z
Google Scholar
[9]
L. Laoufi, Y. Senhadji, A. Benazzouk, Valorization of mud Fergoug dam in manufacturing mortars, Case Stud. Constr. Mater. 5 (2016) 26-38.
DOI: 10.1016/j.cscm.2016.06.002
Google Scholar
[10]
A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Improvement of the mechanical performance of Fergoug dam sediments treated for reuse in road engineering, MATEC Web Conf 149 (2018) 01031.
DOI: 10.1051/matecconf/201814901031
Google Scholar
[11]
A. Kashefighasemabadi, A. Karbassi, M. Tabatabaee, A.M. Dehabadi, Development of soil pollution risk index in the vicinity of a waste dam in Chadormalu iron ore mine, Int. J. Environ. Sci. Technol. 16(12) (2019) 8485-8494.
DOI: 10.1007/s13762-019-02330-6
Google Scholar
[12]
H. Sellaf, H. Trouzine, A. Asroun, Assessment of the Performance of Sediments and Scrap Rubber Layers to Filter the Leachate of Landfills, Int. J. Eng. Res. Afr. 35 (2018) 162-174 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/jera.35.162
Google Scholar
[13]
D.X. Wang, R. Zentar, N. Abriak, W.Y. Xu, Effect of Fly Ash and Lime Treatment on Mechanical and Swell Properties of Dunkirk Dredged Sediments, Adv. Mat. Res. 250-253 (2011) 755-760 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/amr.250-253.755
Google Scholar
[14]
N. Ramli, M.H.H. Jumali, W.S.W. Salim, Fundamental Characterisation of Dredged Marine Sediments from Kuala Perlis Jetty by XRF, XRD and FTIR, Adv. Mat. Res. 620 (2012) 469-473 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/amr.620.469
Google Scholar
[15]
I. Laoufi, L. Laoufi, Y. Senhadji, A. Benazzouk, Study of Mortars Made with Natural and Artificial Pozzolans, J. Mater. Eng. Struct. 6(3) (2019) 427-442.
Google Scholar
[16]
J.L. Ooi, L.W. Ean, B.S. Mohammed, M.A. Malek, L.S. Wong, C.W. Tang, H.Q. Chua. Study on the Properties of Compressed Bricks Using Cameron Highlands Reservoir Sediment as Primary Material, Appl. Mech. Mater. 710 (2015) 25-29 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/amm.710.25
Google Scholar
[17]
F. Mostefa, N. Bouhamou, H.A. Mesbah, S. Aggoune, D. Mekhatria, Sedimentary Clays as Geopolymer Precursor, J. Eng. Res. Afr. 39 (2017) 97-111 https://www.scientific.net/.
DOI: 10.4028/www.scientific.net/jera.39.97
Google Scholar
[18]
I. Goual, M.S. Goual S. Taibi, N. Abou-Bekr, Amélioration des propriétés d'un tuf naturel utilisé en technique routière saharienne par ajout d'un sable calcaire [In French], Eur. J. Environ. Civil Eng. 16(6) (2012) 744-763.
DOI: 10.1080/19648189.2012.667653
Google Scholar
[19]
M. Morsli, B. Abderrahim, B. Mahmoud, G. Michel, Etude du durcissement d'un tuf d'encroûtement de Hassi-Messaoud (Algérie) [In French], Eur. J. Environ. Civil Eng. 11(9–10) (2007) 1219-1240.
DOI: 10.3166/regc.11.1219-1240
Google Scholar
[20]
A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Valorisation of Natural Waste: Dam Sludge for Road Construction, Nature Environment and Pollution Technology. 19(3) (2020) 1075-1083.
DOI: 10.46488/nept.2020.v19i03.018
Google Scholar
[21]
ISO 17892-4: Geotechnical investigation and testing, Laboratory testing of soil. Part 4: determination of particle size distribution, combination of sieving and sedimentation, International Organization for Standardization. (2004).
Google Scholar
[22]
ISO 17892-12: Geotechnical investigation and testing -- Laboratory testing of soil. Part 12: Determination of Atterberg limits, International Organization for Standardization, (2004).
Google Scholar
[23]
ISO 17892-3: Geotechnical investigation and testing -- Laboratory testing of soil -- Part 3: Determination of particle density, Pycnometer method. International Organization for Standardization. (2004).
Google Scholar
[24]
B. Remini, D. Bensafia, Envasement des barrages dans les régions arides. Exemples algeriens [In French], Larhyss journal, 27 (2016) 63-90.
Google Scholar
[25]
N.T. Thanh, Valorization of marine and fluvial sediments in road construction," M.S. thesis, école des mines de Douai, France (2009).
Google Scholar
[26]
A. Baran, M. Mierzwa-Hersztek, K. Gondek, M. Tarnawski, M. Szara, O. Gorczyca, T. Koniarz, The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment, Environ. Geochem. Health. 41 (2019) 2893-2910.
DOI: 10.1007/s10653-019-00359-7
Google Scholar
[27]
ISO 10390: Soil quality - Chemical characteristics of soils. Determination of pH, International Organization for Standardization, (2005).
Google Scholar
[28]
ISO 10694: Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis), International Organization for Standardization, (1995).
Google Scholar
[29]
A. Oyediran, H.F. Durojaiye, Variability in the geotechnical properties of some residual clay soils from south western Nigeria, Int. J. sci. eng. res. 2(9) (2011) 1-6.
DOI: 10.14299/ijser.2011.09.001
Google Scholar
[30]
P.P. Raj, Soil Mechanics and Foundation Engineering, Dorling Kindersley (India) Pvt, Ltd., New Delhi, (2012).
Google Scholar
[31]
J.E. Bowles, Engineering Properties of Soils and their Measurements, 4th edition, McGraw Hill Education (India), Private Limited, New Delhi, (2012).
Google Scholar
[32]
EN 933-9: Tests for the Geometrical Properties of Aggregates - Part 9: Assessment of Fines—Methylene Blue Test, European Committee for Standardization, Belgium, 2009+A1. (2013).
DOI: 10.3403/01531886u
Google Scholar
[33]
LCPC-SETRA: Realization of embakments and subgrade layers, Technical Guide, Fascicule II, Annexes techniques (1992).
Google Scholar
[34]
EN 1744-1: Tests for chemical properties of aggregates - Part 1: Chemical analysis, European Committee for Standardization, Brussels, Belgium, (2009).
Google Scholar
[35]
S.R. Kaniraj, Design Aids in Soil Mechanics and Foundation Engineering, McGraw Hill Education (India) Private Limited, New Delhi, (1988).
Google Scholar
[36]
K.V.S. Apparao, V.C.S. Rao, Soil Testing Laboratory Manual and Question Bank, Universal Science Press, New Delhi, (1995).
Google Scholar
[37]
EN 13286-2: Unbound and hydraulically bound mixtures - Part 2: Test methods for laboratory reference density and water content - Proctor compaction, European Committee for Standardization, Brussels, Belgium, (2012).
DOI: 10.3403/30212169
Google Scholar
[38]
EN 13286-47: Unbound and hydraulically bound mixtures - Part 47: Test method for the determination of the California bearing Ratio, Immediate Bearing Index and linear swelling", European Committee for Standardization, Brussels, Belgium, (2004).
DOI: 10.3403/02993050
Google Scholar
[39]
LCPC-SETRA: Guide technique pour la réalisation des remblais et des couches de forme. Editions du SETRA-LCPC, Fascicules I and II, (2000) 98-102.
Google Scholar
[40]
F. Ye, X. Huang, D. Zhang, L. Tian, Y. Zeng, Distribution of heavy metals in sediments of the Pearl River Estuary, Southern China: Implications for sources and historical changes, Int. J. Environ. Sci. 24(4) (2012) 579-588.
DOI: 10.1016/s1001-0742(11)60783-3
Google Scholar
[41]
R. Achour, N. Abriak, R. Zentar, P. Rivard, P. Gregoire, Valorization of unauthorized sea disposal dredged sediments as a road foundation material, Environ. Technol. 35(16) (2014) 1997-2007.
DOI: 10.1080/09593330.2014.889758
Google Scholar
[42]
M. Le Guern, M. Boutouil, L. Saussaye, D. Lescarmontier, Geotechnical and mechanical characterisation of three marine dredged sediments treated with hydraulic binders. Proceedings of the South Baltic Conference on Dredged Materials in Dike Construction, Rostock, (2014).
Google Scholar
[43]
S. Kamali, F. Bernard, N. Abriak, P. Degrugilliers, Marine dredged sediments as new materials resource for road construction, Waste Manag. 28 (2008) 919-928.
DOI: 10.1016/j.wasman.2007.03.027
Google Scholar
[44]
H. Marouf, A. Semcha, N. Mahmoudi, N. Bouhamou, M. Benzerzour, W. Maherzi, Experimental study on the reuse of a dredging sludge from west of Algeria in brick fabrication, J. Mater. Eng. Struct. 5 (2018) 163-172.
Google Scholar
[45]
M.A. Bourabah, B. Serbah, N. Abou-Bekr, Geotechnical characterization of waste dredged sediments for Algerian damsn In book: Coupled Phenomena in Environmental Geotechnics – Manassero et al. (Eds). Taylor & Francis Group, London, (2013) 299-305.
DOI: 10.1201/b15004-34
Google Scholar
[46]
A.A. Belloo, Geotechnical evaluation of reddish brown tropical soils, Geotech. Geol. Eng. 30(2) (2012) 481-498.
DOI: 10.1007/s10706-011-9482-1
Google Scholar
[47]
ASTM D2487: Standard Test Methods for Classification of Soils for Engineering Purposes (Unified Soil Classification System, USCS), American Society for Testing and Materials, (2017).
Google Scholar
[48]
L.K. Kreirzti, L. Benamara, N.E. Boudjenane, Valorization of dredging sediments of dam BOUHNIFIA in ceramic, J. Aust. Ceram. Soc. 55 (2019) 1081-1089.
DOI: 10.1007/s41779-019-00321-x
Google Scholar
[49]
N. Junakova, J. Junak, Sustainable Use of Reservoir Sediment through Partial Application in Building Material, Sustainability. 9(5) (2017) 852.
DOI: 10.3390/su9050852
Google Scholar
[50]
N. Junakova, J. Junak, The effect of sediment treatment on strength and water absorption capacity of sediment based concrete, IOP Conf Ser: Mater. Sci. Eng. 385 (2018) 1-5.
DOI: 10.1088/1757-899x/385/1/012023
Google Scholar
[51]
NF P18-011: Afnor. Bétons – Classification des environnements agressifs [In French]. French standard. (1992).
Google Scholar
[52]
A.W. Skempton, The Colloidal activity of clays. Proc. 3rd Int. Conf. Soil Mechanics and Foundation Engineering (London), 1 (1953) 47-61.
Google Scholar
[53]
P. Di Mascio, L. Moretti, A. Capannolo, Concrete block pavements in urban and local roads: Analysis of stress-strain condition and proposal for a catalogue, J. Traffic Transp. Eng. Engl. Ed. 6(6) (2019) 557-566.
DOI: 10.1016/j.jtte.2018.06.003
Google Scholar
[54]
O. Boudlal, N. Ferri, K. Khattaoui, S. Idres, R. Ouerd, Valorisation of Taksebt dam sediments (Algeria) in road construction, Journées Nationales de Géotechnique et de Géologie de l'Ingénieur – Nancy, France, (2016).
Google Scholar
[55]
A.F. Cabalar, W.S. Mustafa, Behaviour of sand–clay mixtures for road pavement subgrade, Int. J. Pavement Eng. 18(8) (2015) 714-726.
DOI: 10.1080/10298436.2015.1121782
Google Scholar
[56]
Assises de Chaussées : Guide d'application des normes pour le réseau routier national [In French], Paris: LCPC Edition, (1998).
Google Scholar
[57]
K. Fletcher Hazirbaba, Large-scale direct shear and CBR performance of geofibre-reinforced sand, Road Mater. Pavement Des. 19(6) (2018) 1350-1371.
DOI: 10.1080/14680629.2017.1310667
Google Scholar
[58]
A.F. Cabalar, Z. Karabash, W.S. Mustafa, Stabilizing a clay using tire buffings and lime, Road Mater. Pavement Des. 15(4) (2014) 872-891.
DOI: 10.1080/14680629.2014.939697
Google Scholar
[59]
U. Kim, D. Kim, L. Zhuang, Influence of fines content on the undrained cyclic shear strength of sand–clay mixtures, Soil Dyn. Earthq. Eng. 83 (2016) 124-134.
DOI: 10.1016/j.soildyn.2016.01.015
Google Scholar
[60]
M. Akacem, R. Zentar, B. Mekerta, A. Sadok, O.H. Moulay, Co-valorisation of Local Materials Tuffs and Dune Sands in Construction of Roads, Geotech. Geol. Eng. 38 (2020) 435–447.
DOI: 10.1007/s10706-019-01035-4
Google Scholar
[61]
E.G. Daheur, I. Goual, S. Taibi, R. Mitiche-Kettab, Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation), Geotech. Geol. Eng. 37(3) (2019) 1687-1701.
DOI: 10.1007/s10706-018-0715-4
Google Scholar
[62]
A. Puech, J.P. Beuce, J.L. Colliat, Advances in the design of piles driven into non-cemented to weakly cemented carbonate formations, Proceedings of the International Conference on Calcareous Sediments, Perth, Australia 1 (1988) 305-312.
Google Scholar