[1]
M. E. Khodayar, M. Barati, and M. Shahidehpour, Integration of high reliability distribution system in microgrid operation,, IEEE Transactions on Smart Grid, vol. 3, pp.1997-2006, (2012).
DOI: 10.1109/tsg.2012.2213348
Google Scholar
[2]
M. S. Kumar and S. T. Revankar, Development scheme and key technology of an electric vehicle: An overview,, Renewable and Sustainable Energy Reviews, vol. 70, pp.1266-1285, (2017).
DOI: 10.1016/j.rser.2016.12.027
Google Scholar
[3]
O. Hafez and K. Bhattacharya, Optimal planning and design of a renewable energy based supply system for microgrids,, Renewable Energy, vol. 45, pp.7-15, (2012).
DOI: 10.1016/j.renene.2012.01.087
Google Scholar
[4]
J. Wang, A. Botterud, R. Bessa, H. Keko, L. Carvalho, D. Issicaba, et al., Wind power forecasting uncertainty and unit commitment,, Applied Energy, vol. 88, pp.4014-4023, (2011).
DOI: 10.1016/j.apenergy.2011.04.011
Google Scholar
[5]
D. Rastler, Electricity energy storage technology options: a white paper primer on applications, costs and benefits: Electric Power Research Institute, (2010).
Google Scholar
[6]
P. A. Gbadega and A. K. Saha, Dynamic Tuning of the Controller Parameters in a Two-Area Multi-Source Power System for Optimal Load Frequency Control Performance,, in International Journal of Engineering Research in Africa, 2020, pp.111-129.
DOI: 10.4028/www.scientific.net/jera.51.111
Google Scholar
[7]
M. Gautschi, O. Scheuss, and C. Schluchter, Simulation of an agent based vehicle-to-grid (v2g) implementation,, Electric Power Systems Research, vol. 120, pp.177-183, (2009).
Google Scholar
[8]
C. Bordons, F. Garcia-Torres, and M. A. Ridao, Model predictive control of microgrids vol. 358: Springer, (2020).
Google Scholar
[9]
P. A. Gbadega and K. T. Akindeji, Linear quadratic regulator technique for optimal load frequency controller design of interconnected linear power systems,, in 2020 IEEE PES/IAS PowerAfrica, 2020, pp.1-5.
DOI: 10.1109/powerafrica49420.2020.9219887
Google Scholar
[10]
C. Bordons, M. A. Ridao, A. Pérez, A. Arce, and D. Marcos, Model predictive control for power management in hybrid fuel cell vehicles,, in 2010 IEEE Vehicle Power and Propulsion Conference, 2010, pp.1-6.
DOI: 10.1109/vppc.2010.5729119
Google Scholar
[11]
C. Bordons, G. Teno, J. J. Marquez, and M. A. Ridao, Effect of the Integration of Disturbances Prediction in Energy Management Systems for Microgrids,, in 2019 International Conference on Smart Energy Systems and Technologies (SEST), 2019, pp.1-6.
DOI: 10.1109/sest.2019.8849047
Google Scholar
[12]
G. Wang, J. Zhao, F. Wen, Y. Xue, and G. Ledwich, Dispatch strategy of PHEVs to mitigate selected patterns of seasonally varying outputs from renewable generation,, IEEE Transactions on Smart Grid, vol. 6, pp.627-639, (2014).
DOI: 10.1109/tsg.2014.2364235
Google Scholar
[13]
Y. Mou, H. Xing, Z. Lin, and M. Fu, Decentralized optimal demand-side management for PHEV charging in a smart grid,, IEEE Transactions on Smart Grid, vol. 6, pp.726-736, (2014).
DOI: 10.1109/tsg.2014.2363096
Google Scholar
[14]
H. Mohsenian-Rad, Optimal charging of electric vehicles with uncertain departure times: A closed-form solution,, IEEE Transactions on Smart Grid, vol. 6, pp.940-942, (2014).
DOI: 10.1109/tsg.2014.2367242
Google Scholar
[15]
W. Lee, L. Xiang, R. Schober, and V. W. Wong, Electric vehicle charging stations with renewable power generators: A game theoretical analysis,, IEEE transactions on smart grid, vol. 6, pp.608-617, (2014).
DOI: 10.1109/tsg.2014.2374592
Google Scholar
[16]
M. H. Tushar, C. Assi, and M. Maier, Distributed real-time electricity allocation mechanism for large residential microgrid,, IEEE Transactions on Smart Grid, vol. 6, pp.1353-1363, (2014).
DOI: 10.1109/tsg.2014.2375671
Google Scholar
[17]
F. Garcia-Torres, D. G. Vilaplana, C. Bordons, P. Roncero-Sanchez, and M. A. Ridao, Optimal management of microgrids with external agents including battery/fuel cell electric vehicles,, IEEE Transactions on Smart Grid, vol. 10, pp.4299-4308, (2018).
DOI: 10.1109/tsg.2018.2856524
Google Scholar
[18]
P. Richardson, D. Flynn, and A. Keane, Optimal charging of electric vehicles in low-voltage distribution systems,, IEEE Transactions on Power Systems, vol. 27, pp.268-279, (2011).
DOI: 10.1109/tpwrs.2011.2158247
Google Scholar
[19]
A. Di Giorgio, F. Liberati, and S. Canale, Electric vehicles charging control in a smart grid: A model predictive control approach,, Control Engineering Practice, vol. 22, pp.147-162, (2014).
DOI: 10.1016/j.conengprac.2013.10.005
Google Scholar
[20]
J. Pahasa and I. Ngamroo, PHEVs bidirectional charging/discharging and SoC control for microgrid frequency stabilization using multiple MPC,, IEEE Transactions on Smart Grid, vol. 6, pp.526-533, (2014).
DOI: 10.1109/tsg.2014.2372038
Google Scholar
[21]
F. Garcia-Torres and C. Bordons, Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control,, IEEE Transactions on Industrial Electronics, vol. 62, pp.5195-5207, (2015).
DOI: 10.1109/tie.2015.2412524
Google Scholar
[22]
N. Z. Aitzhan and D. Svetinovic, Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams,, IEEE Transactions on Dependable and Secure Computing, vol. 15, pp.840-852, (2016).
DOI: 10.1109/tdsc.2016.2616861
Google Scholar
[23]
E. Sortomme and M. A. El-Sharkawi, Optimal charging strategies for unidirectional vehicle-to-grid,, IEEE Transactions on Smart Grid, vol. 2, pp.131-138, (2010).
DOI: 10.1109/tsg.2010.2090910
Google Scholar
[24]
M. Ansari, A. T. Al-Awami, M. Abido, and E. Sortomme, Optimal charging strategies for unidirectional vehicle-to-grid using fuzzy uncertainties,, in 2014 IEEE PES T&D Conference and Exposition, 2014, pp.1-5.
DOI: 10.1109/tdc.2014.6863314
Google Scholar
[25]
H. Kamankesh, V. G. Agelidis, and A. Kavousi-Fard, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand,, Energy, vol. 100, pp.285-297, (2016).
DOI: 10.1016/j.energy.2016.01.063
Google Scholar
[26]
P. Aliasghari, B. Mohammadi-Ivatloo, M. Alipour, M. Abapour, and K. Zare, Optimal scheduling of plug-in electric vehicles and renewable micro-grid in energy and reserve markets considering demand response program,, Journal of Cleaner Production, vol. 186, pp.293-303, (2018).
DOI: 10.1016/j.jclepro.2018.03.058
Google Scholar
[27]
A. K Saha, S. P. Chowdhury, S. Chowdhury, and Y. Song, Dynamic model of PEM fuel cell with fuzzy logic controller,, in 2007 42nd International Universities Power Engineering Conference, 2007, pp.753-757.
DOI: 10.1109/upec.2007.4469044
Google Scholar
[28]
C. Bordons, F. Garcia-Torres, and M. A. Ridao, Model Predictive Control of Microgrids: Springer, (2020).
Google Scholar
[29]
H. Bevrani, B. François, and T. Ise, Microgrid dynamics and control: John Wiley & Sons, (2017).
Google Scholar
[30]
A. K Saha, S. P. Chowdhury, and S. Chowdhury, PEM fuel cell as energy source using fuzzy logic controller,, (2007).
DOI: 10.1049/ic:20070626
Google Scholar
[31]
P. A. Gbadega and A. K. Saha, Adaptive model-based receding horizon control of interconnected renewable-based power micro-grids for effective control and optimal power exchanges,, in 2020 International SAUPEC/RobMech/PRASA Conference, 2020, pp.1-6.
DOI: 10.1109/saupec/robmech/prasa48453.2020.9041136
Google Scholar
[32]
P. A. Gbadega and A. K. Saha, Electrical characteristics improvement of photovoltaic modules using two-diode model and its application under mismatch conditions,, in 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), 2019, pp.328-333.
DOI: 10.1109/robomech.2019.8704846
Google Scholar
[33]
P. A. Gbadega and A. K. Saha, Impact of Incorporating Disturbance Prediction on the Performance of Energy Management Systems in Micro-Grid,, IEEE Access, vol. 8, pp.162855-162879, (2020).
DOI: 10.1109/access.2020.3021598
Google Scholar
[34]
P. A. Gbadega and A. K. Saha, The Impacts of Harmonics Reduction on THD Analysis in HVDC Transmission System using Three-phase Multi-Pulse and higher Level Converters,, in 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), 2019, pp.444-449.
DOI: 10.1109/robomech.2019.8704743
Google Scholar
[35]
D. Ipsakis, S. Voutetakis, P. Seferlis, F. Stergiopoulos, and C. Elmasides, Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage,, International journal of hydrogen energy, vol. 34, pp.7081-7095, (2009).
DOI: 10.1016/j.ijhydene.2008.06.051
Google Scholar
[36]
P. A. Gbadega and A. K. Saha, Model predictive controller design of a wavelength-based thermo-electrical model of a photovoltaic (PV) module for optimal output power,, in International Journal of Engineering Research in Africa, 2020, pp.133-148.
DOI: 10.4028/www.scientific.net/jera.48.133
Google Scholar
[37]
M. S. Taha, H. H. Abdeltawab, and Y. A.-R. I. Mohamed, An online energy management system for a grid-connected hybrid energy source,, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, pp.2015-2030, (2018).
DOI: 10.1109/jestpe.2018.2828803
Google Scholar
[38]
P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, Modeling and control of the ultracapacitor-based regenerative controlled electric drives,, IEEE Transactions on industrial electronics, vol. 58, pp.3471-3484, (2010).
DOI: 10.1109/tie.2010.2087290
Google Scholar
[39]
P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,, IEEE Transactions on Industrial Electronics, vol. 59, pp.4511-4522, (2012).
DOI: 10.1109/tie.2011.2181129
Google Scholar
[40]
B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media, (2013).
Google Scholar
[41]
L. Valverde, F. Rosa, A. Del Real, A. Arce, and C. Bordons, Modeling, simulation and experimental set-up of a renewable hydrogen-based domestic microgrid,, International journal of hydrogen energy, vol. 38, pp.11672-11684, (2013).
DOI: 10.1016/j.ijhydene.2013.06.113
Google Scholar
[42]
M. S. Taha and A.-R. M. Yasser, Robust MPC-based energy management system of a hybrid energy source for remote communities,, in 2016 IEEE Electrical Power and Energy Conference (EPEC), 2016, pp.1-6.
DOI: 10.1109/epec.2016.7771706
Google Scholar
[43]
S. Mohammadshahi, E. M. Gray, and C. Webb, A review of mathematical modelling of metal-hydride systems for hydrogen storage applications,, international journal of hydrogen energy, vol. 41, pp.3470-3484, (2016).
DOI: 10.1016/j.ijhydene.2015.12.079
Google Scholar
[44]
M. Mottus, M. Sulev, F. Baret, A. Reinart, and R. Lopez, Photosynthetically Active Radiation: Measurement and Modeling,, ed, (2011).
DOI: 10.1007/978-1-4614-5806-7_451
Google Scholar
[45]
J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, Control of fuel cell power systems: principles, modeling, analysis and feedback design: Springer Science & Business Media, (2004).
Google Scholar
[46]
N. Amjady, F. Keynia, and H. Zareipour, Short-term load forecast of microgrids by a new bilevel prediction strategy,, IEEE Transactions on smart grid, vol. 1, pp.286-294, (2010).
DOI: 10.1109/tsg.2010.2078842
Google Scholar
[47]
R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future,, International journal of forecasting, vol. 30, pp.1030-1081, (2014).
DOI: 10.1016/j.ijforecast.2014.08.008
Google Scholar
[48]
A. Bemporad and M. Morari, Control of systems integrating logic, dynamics, and constraints,, Automatica, vol. 35, pp.407-427, (1999).
DOI: 10.1016/s0005-1098(98)00178-2
Google Scholar
[49]
P. A. Gbadega and A. K. Saha, Load Frequency Control of a Two-Area Power System with a Stand-Alone Micro-grid based on Adaptive Model Predictive Control,, IEEE Journal of Emerging and Selected Topics in Power Electronics, (2020).
DOI: 10.1109/jestpe.2020.3012659
Google Scholar
[50]
Y. Zhang, R. Wang, T. Zhang, Y. Liu, and B. Guo, Model predictive control-based operation management for a residential microgrid with considering forecast uncertainties and demand response strategies,, IET Generation, Transmission & Distribution, vol. 10, pp.2367-2378, (2016).
DOI: 10.1049/iet-gtd.2015.1127
Google Scholar
[51]
P. A. Gbadega and O. A. Balogun, Active and Reactive Power Droop Controller Design for Reliable and Optimal Control of Renewable-Based Micro-Grid,, in Advanced Engineering Forum, 2021, pp.111-136.
DOI: 10.4028/www.scientific.net/aef.41.111
Google Scholar
[52]
P. A. Gbadega and A. K. Saha, Model-Based Receding Horizon Control of Wind Turbine System for Optimal Power Generation,, in Advanced Engineering Forum, 2021, pp.83-98.
DOI: 10.4028/www.scientific.net/aef.40.83
Google Scholar
[53]
A. S. Mir and N. Senroy, Adaptive model predictive control scheme for application of SMES for load frequency control,, IEEE Transactions on Power Systems, (2017).
DOI: 10.1109/tpwrs.2017.2720751
Google Scholar
[54]
A. K. Saha, Grid-Connected PEM Fuel Cell with Multi-Pulse Multilevel Inverter,, in International Journal of Engineering Research in Africa, 2020, pp.54-67.
DOI: 10.4028/www.scientific.net/jera.49.54
Google Scholar