[1]
J.S. David, J. Viveckraj, S. Sivamani, K. Varatharajan, Comparative study of solar water heating systems - flat plate collector (FPC) with evacuated Tube Collector, Int. J. Eng. Res. Africa. 26 (2016) 76-85.
DOI: 10.4028/www.scientific.net/jera.26.76
Google Scholar
[2]
S. Ravishankar, P.K. Nagarajan, D. Vijayakumar, Experimental validation of fresh water production using triangular pyramid solar still with PCM storage, Int. J. Eng. Res. Africa. 20 (2016) 51-58.
DOI: 10.4028/www.scientific.net/jera.20.51
Google Scholar
[3]
C. Khelifi, F. Ferroudji, M. Ouali. Analytical Modeling and Optimization of a solar chimney power plant, Int. J. Eng. Res. Africa. 25 (2016) 78-88.
DOI: 10.4028/www.scientific.net/jera.25.78
Google Scholar
[4]
D. Taloub, A. Bouras, Z. Driss. effect of the soil inclination on natural convection in half-elliptical green houses, Int. J. Eng. Res. Africa. 50 (2020) 70-78.
DOI: 10.4028/www.scientific.net/jera.50.70
Google Scholar
[5]
B. Bakri, O. Eleuch, A. Ketata, S. Driss, Z. Driss, H. Benguesmia, Study of the turbulent flow in a newly solar air heater test bench with natural and forced convection modes, Energy.161 (2018) 1028-1041.
DOI: 10.1016/j.energy.2018.07.187
Google Scholar
[6]
A.K. Pandey, M. Kumar, Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation, Alexandria Eng. J., 56 (2017) 55–62.
DOI: 10.1016/j.aej.2016.08.035
Google Scholar
[7]
P. Singh, A.K. Pandey, M. Kumar, Forced convection in MHD slip flow of alumina-water nanofluid over a flat plate, J. Enh. H. Trans. 23 (2016) 487- 497.
DOI: 10.1615/jenhheattransf.2018025485
Google Scholar
[8]
Z. Bocu, Z. Altac, Laminar natural convection heat transfer and air flow in three dimensional rectangular enclosures with pin arrays attached to hot wall, App. Therm. Eng. 31 (2011) 3189–3195.
DOI: 10.1016/j.applthermaleng.2011.05.045
Google Scholar
[9]
A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, S.M. Shalaby, B.M. Moharram, Thermal performance investigation of double pass-finned plate solar airheater, App. En. 88 (2011)1727–1739.
DOI: 10.1016/j.apenergy.2010.11.017
Google Scholar
[10]
M.A. Wazed, Y. Nukman, M.T. Islam, Design fabrication of a cost effective solar air heater for Bangladesh, App. En, 87(2010)3030–3036.
DOI: 10.1016/j.apenergy.2010.02.014
Google Scholar
[11]
K. Sopian, M.A. Alghoul, M.A. Ebrahim, M.Y. Sulaiman, E.A. Musa, Evaluation of thermal efficiency of double-pass solar collector with porous- nonporousmedia, Ren. En. 34 (2009) 640-645.
DOI: 10.1016/j.renene.2008.05.027
Google Scholar
[12]
H. Esen, Experimental energy and exergy analysis of a double-flow solar airheater having different obstacles on absorber plates, Buil. Env.43 (2008) 046-1054.
DOI: 10.1016/j.buildenv.2007.02.016
Google Scholar
[13]
F. Ozgen, M. Esen, H. Esen, Experimental investigation of thermal performanceof a double-flow solar air heater having aluminum cans, Ren. En, 34 (2009)2391-2398.
DOI: 10.1016/j.renene.2009.03.029
Google Scholar
[14]
C. Teodosiu, F. Kuznik, R. Teodosiu, CFD modeling of buoyancy driven cavities with internal heat source: Application to heated rooms, En. Buil.68 (2014) 403-411.
DOI: 10.1016/j.enbuild.2013.09.041
Google Scholar
[15]
S. Driss, Z. Driss, I. Kammoun, Computational study and experimental validation of the heat ventilation in a living room with a solar patio system, En. Buil.119 (2016) 28-40.
DOI: 10.1016/j.enbuild.2016.03.016
Google Scholar
[16]
S. Driss, Z. Driss, I. Kammoun, Numerical simulation and wind tunnel experiments on wind-induced natural ventilation in isolated building with patio, Energy. 90 (2015) 917-925.
DOI: 10.1016/j.energy.2015.07.128
Google Scholar
[17]
N. Joshi, A. K. Pandey, H. Upreti, M. Kumar, Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher-order chemical reaction, H. Trans. 50 (2020) 3661–3682.
DOI: 10.1002/htj.22046
Google Scholar
[18]
H. Hassan, S. Abo-Elfadl, Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate, Ren. En. 116 (2018) 728-740.
DOI: 10.1016/j.renene.2017.09.047
Google Scholar
[19]
T. Alam, M-H. Kim, Performance improvement of double-pass solar air heater–A state of art of review, Ren. Sust. En. Rev.79 (2017) 779-793.
DOI: 10.1016/j.rser.2017.05.087
Google Scholar
[20]
M. Goodarzi, E. Nouri, A new double-pass parallel-plate heat exchanger with better wall temperature uniformity under uniform heat flux, Int. J. Therm. Sci. 102 (2016)137-144.
DOI: 10.1016/j.ijthermalsci.2015.11.012
Google Scholar
[21]
S. Singh, P. Dhiman, Thermal performance of double pass packed bed solar air heaters–A comprehensive review, Ren. Sust. En. Rev. 53 (2016) 1010-1031.
DOI: 10.1016/j.rser.2015.09.058
Google Scholar
[22]
L. Chen, X.R. Zhang, Experiments on natural convective solar thermal achieved by supercritical CO2/dimethyl ether mixture fluid, J. Sol. En. Eng. 136 (2014) n° 031011.
DOI: 10.1115/1.4026920
Google Scholar
[23]
X.R. Zhang, Y. Zhang, L. Chen, Experimental study on solar thermal conversion based on supercritical natural convection, Ren. Energy. 62 (2014) 610-618.
DOI: 10.1016/j.renene.2013.08.025
Google Scholar
[24]
L. Chen, X.R. Zhang, Experimental analysis on a novel solar collector system achieved by supercritical CO2 natural convection, En. Conv. Manag. 77 (2014) 173-182.
DOI: 10.1016/j.enconman.2013.08.059
Google Scholar
[25]
H. Esen, F. Ozgen, M. Esen, A. Sengur, Modelling of a new solar air heater through least-squares support vector machines, Exp. Sys. Appl. 36 (2009) 10673–10682.
DOI: 10.1016/j.eswa.2009.02.045
Google Scholar
[26]
H. Esen, F. Ozgen, M. Esen, A. Sengur, Artificial neural network and wavelet neural network approaches for modelling of a solar air heater, Exp. Sys. Appl. 36 (2009) 11240–11248.
DOI: 10.1016/j.eswa.2009.02.073
Google Scholar
[27]
H.I. Elsanossi, Performance analysis of solar air heater with different absorber material in single pass. Int. Res. J. Eng. Tech. 5(2018) 2795-2801.
Google Scholar
[28]
Z. Driss, O. Mlayeh, D. Driss, M. Maaloul, M.S. Abid, Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor, Energy. 74(2014) 506-517.
DOI: 10.1016/j.energy.2014.07.016
Google Scholar
[29]
Z. Driss, O. Mlayah, S. Driss, D. Driss, M. Maaloul, M.S. Abid, Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors, Energy. 89(2015) 708-729.
DOI: 10.1016/j.energy.2015.06.023
Google Scholar
[30]
Z. Driss, O. Mlayah, S. Driss, M. Maaloul, M.S. Abid, Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel, Energy. 113(2016) 894-908.
DOI: 10.1016/j.energy.2016.07.112
Google Scholar
[31]
B. Bakri, A. Ketata, S. Driss, H. Benguesmia, Z. Driss, F. Hamrit, Unsteady investigation of the heat ventilation in a box prototype, Int. J. Therm. Sci.135(2019) 285–297.
DOI: 10.1016/j.ijthermalsci.2018.09.023
Google Scholar
[32]
H. Benguesmia, B. Bakri, Z. Driss, A. Ketata, S. Driss, Effect of the turbulence model on the heat ventilation analysis in a box prototype, Diag. 21(2020) 55-66.
DOI: 10.1016/j.ijthermalsci.2018.09.023
Google Scholar
[33]
B. Bakri, O. Eleuch, A. Ketata, S. Driss, Z. Driss, H. Benguesmia, Study of the turbulent flow in a newly solar air heater test bench with natural and forced convection modes, Energy. 161(2018) 1028-1041.
DOI: 10.1016/j.energy.2018.07.187
Google Scholar