Characterization and Mechanical Property Measurements by Instrumented Indentation Testing of Niger Delta Oil Shale Cuttings

Article Preview

Abstract:

Oil shales have unstable mechanical and chemical properties, which makes their extraction for characterization and conventional mechanical testing uneasy and complex. Most often, mechanical property measurements are usually taken from core samples that are costly to extract and test using conventional testing methods. This paper presents a focused study carried out on oil shale cuttings obtained from the sidewalls of two different wellbore depths in the Niger Delta area of Nigeria. Using the X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) characterization techniques, the morphology of these shales was studied. The results obtained clearly showed the composition, bonding and variations in the morphology of the studied shale samples. Furthermore, the heterogeneity associated with these shales across varied depths were revealed. An efficient and less expensive technique compared to conventional testing methods, instrumented indentation testing (IIT) was carried out to obtain essential mechanical parameters of the shale specimen. These properties are important parameters in determining the hydrocarbon storage space of shale formations, wellbore stability, and optimization of hydraulic fracturing which is necessary for efficient drilling operations.

You might also be interested in these eBooks

Info:

Pages:

89-100

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Taheri-shakib, A. Kantzas, Review article A comprehensive review of microwave application on the oil shale : Prospects for shale oil production, Fuel. 305 (2021) 121519. https://doi.org/10.1016/j.fuel.2021.121519.

DOI: 10.1016/j.fuel.2021.121519

Google Scholar

[2] R.P. Steiger, P.K. Leung, Quantitative determination of the mechanical properties of shales, SPE Driilling Eng. 7 (1992) 181–185. https://doi.org/10.2118/18024-PA.

DOI: 10.2118/18024-pa

Google Scholar

[3] G. Chen, M.E. Chenevert, M.M. Sharma, M. Yu, A study of wellbore stability in shales including poroelastic , chemical , and thermal effects, J. Pet. Sci. Eng. 38 (2003) 167–176. https://doi.org/10.1016/S0920-4105(03)00030-5.

DOI: 10.1016/s0920-4105(03)00030-5

Google Scholar

[4] J. Hay, C.H. Sondergeld, Mechanical Testing of Shale by Instrumented Indentation, Agil. Technol. Appl. Note. (2010) 1–8.

Google Scholar

[5] P. Horsrud, Estimating mechanical properties of shale from empirical correlations, SPE Drill. Complet. 16 (2001) 68–73. https://doi.org/10.2118/56017-PA.

DOI: 10.2118/56017-pa

Google Scholar

[6] P. Chen, Q. Han, T. Ma, D. Lin, The mechanical properties of shale based on micro-indentation test, Pet. Explor. Dev. 42 (2015) 723–732. https://doi.org/10.1016/S1876-3804 (15) 30069-0.

DOI: 10.1016/s1876-3804(15)30069-0

Google Scholar

[7] X. Niu, D. Yan, M. Hu, Z. Liu, X. Wei, M. Zuo, Controls of distinct mineral compositions on pore structure in over-mature shales: A case study of lower Cambrian niutitang shales in South China, Minerals. 11 (2021) 1–19. https://doi.org/10.3390/min11010051.

DOI: 10.3390/min11010051

Google Scholar

[8] X. Wang, J. Hou, S. Li, L. Dou, S. Song, Q. Kang, D. Wang, Insight into the nanoscale pore structure of organic-rich shales in the Bakken Formation, USA, J. Pet. Sci. Eng. 191 (2020) 107182. https://doi.org/10.1016/j.petrol.2020.107182.

DOI: 10.1016/j.petrol.2020.107182

Google Scholar

[9] Y. Wang, L. Liu, S. Zheng, Z. Luo, Y. Sheng, X. Wang, Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale , southern Sichuan Basin , China : Implications for pore evolution of highly overmature marine shale, J. Nat. Gas Sci. Eng. 67 (2019) 134–146. https://doi.org/10.1016/j.jngse.2019.04.020.

DOI: 10.1016/j.jngse.2019.04.020

Google Scholar

[10] Y. Wang, Y. Zhu, S. Liu, R. Zhang, Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales, Fuel. 181 (2016) 227–237. https://doi.org/10.1016/j.fuel.2016.04.082.

DOI: 10.1016/j.fuel.2016.04.082

Google Scholar

[11] A. Akono, Nano-scale characterization of organic-rich shale via indentation methods, in: New Front. Oil Gas Explor., Springer International Publishing Switzerland, 2016: p.209–233. https://doi.org/10.1007/978-3-319-40124-9.

DOI: 10.1007/978-3-319-40124-9_6

Google Scholar

[12] L.L. Wang, D.S. Yang, R.W. Yang, S. Chanchole, Investigating the mechanical behavior of shale: A micro-scale approach, J. Nat. Gas Sci. Eng. 36 (2016) 1295–1302. https://doi.org/10.1016/j.jngse.2016.03.051.

DOI: 10.1016/j.jngse.2016.03.051

Google Scholar

[13] D.J.K. Ross, R. Marc Bustin, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs, Mar. Pet. Geol. 26 (2009) 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004.

DOI: 10.1016/j.marpetgeo.2008.06.004

Google Scholar

[14] K. Liu, M. Ostadhassan, B. Bubach, Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks, J. Nat. Gas Sci. Eng. 35 (2016) 1310–1319. https://doi.org/10.1016/j.jngse.2016.09.068.

DOI: 10.1016/j.jngse.2016.09.068

Google Scholar

[15] T. Saif, Q. Lin, B. Bijeljic, M.J. Blunt, Microstructural imaging and characterization of oil shale before and after pyrolysis, Fuel. 197 (2017) 562–574. https://doi.org/10.1016/j.fuel.2017.02.030.

DOI: 10.1016/j.fuel.2017.02.030

Google Scholar

[16] B. Hazra, A.K. Varma, A.K. Bandopadhyay, S. Chakravarty, J. Buragohain, S.K. Samad, A.K. Prasad, FTIR, XRF, XRD and SEM characteristics of Permian shales, India, J. Nat. Gas Sci. Eng. 32 (2016) 239–255. https://doi.org/10.1016/j.jngse.2016.03.098.

DOI: 10.1016/j.jngse.2016.03.098

Google Scholar

[17] P. Sarkar, K.H. Singh, Petrophysical Characterization of Gondwana Shales of South Karanpura Coal Field, Jharkhand, India, ASEG Ext. Abstr. 2016 (2016) 1–8. https://doi.org/10.1071/aseg2016ab248.

DOI: 10.1071/aseg2016ab248

Google Scholar

[18] D. Lai, G. Zhang, G. Xu, Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals, Fuel Process. Technol. 158 (2017) 191–198. https://doi.org/10.1016/j.fuproc.2017.01.005.

DOI: 10.1016/j.fuproc.2017.01.005

Google Scholar

[19] P. Shukla, V. Kumar, M. Curtis, C.H. Sondergeld, C.S. Rai, Nanoindentation studies on shales, in: 47th US Rock Mech. / Geomech. Symp. 2013, ARMA-2013-578, 2013: p.1194–1203.

Google Scholar

[20] G. Dong, P. Chen, A comparative experiment investigate of strength parameters for Longmaxi shale at the macro- and mesoscales, Int. J. Hydrogen Energy. 42 (2017) 20082–20091. https://doi.org/10.1016/j.ijhydene.2017.05.240.

DOI: 10.1016/j.ijhydene.2017.05.240

Google Scholar

[21] W.C. Oliver, G.M. Pharr, An improved technique for determining the hardness and elastic modulus using load and dislacemnet sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. https://doi.org/10.1557/JMR.1992.1564.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[22] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20. https://doi.org/10.1089/neu.2017.5398.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[23] W.C. Pethica, J.B., Hutchings, R. and Oliver, Hardness measurement at penetration depths as small as 20 nm, Philos. Mag. A. 48 (1983) 593–606. https://doi.org/https://doi.org/10.1080/ 01418618308234914.

DOI: 10.1080/01418618308234914

Google Scholar

[24] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res. 1 (1986) 601–609. https://doi.org/10.1557/JMR.1986.0601.

DOI: 10.1557/jmr.1986.0601

Google Scholar

[25] F.E. Oboh, Middle Miocene palaeoenvironments of the Niger Delta, Palaeogeogr. Palaeoclimatol. Palaeoecol. 92 (1992) 55–84. https://doi.org/10.1016/0031-0182(92)90135-R.

DOI: 10.1016/0031-0182(92)90135-r

Google Scholar

[26] D.O. Lambert-Aikhionbare, H.F. Shaw, Significance of clays in the petroleum geology of the Niger Delta, Clay Miner. 17 (1982) 91–103. https://doi.org/10.1180/claymin.1982.017.1.09.

DOI: 10.1180/claymin.1982.017.1.09

Google Scholar

[27] R.W. Wiener, M.G. Mann, M.T. Angelich, J.B. Molyneux, Mobile shale in the Niger Delta: Characteristics, structure, and evolution, AAPG Mem. (2010) 145–161. https://doi.org/10.1306/13231313M933423.

Google Scholar

[28] E.U. Okpogo, C.P. Abbey, I.O. Atueyi, Reservoir characterization and volumetric estimation of Orok Field, Niger Delta hydrocarbon province, Egypt. J. Pet. 27 (2018) 1087–1094. https://doi.org/10.1016/j.ejpe.2018.03.014.

DOI: 10.1016/j.ejpe.2018.03.014

Google Scholar

[29] O.O. Osinowo, J.O. Ayorinde, C.P. Nwankwo, O.M. Ekeng, O.B. Taiwo, Reservoir description and characterization of Eni field Offshore Niger Delta, southern Nigeria, J. Pet. Explor. Prod. Technol. 8 (2018) 381–397. https://doi.org/10.1007/s13202-017-0402-7.

DOI: 10.1007/s13202-017-0402-7

Google Scholar

[30] I. Olorunniwo, S.J. Olotu, O.A. Alao, A.A. Adepelumi, Hydrocarbon reservoir characterization and discrimination using well-logs over AIB-EX , Oil Field , Niger Delta., Heliyon. 5 (2019) e01742. https://doi.org/10.1016/j.heliyon.2019.e01742.

DOI: 10.1016/j.heliyon.2019.e01742

Google Scholar

[31] D.K. Oyeyemi, M.T. Olowokere, A.P. Aizebeokhai, Hydrocarbon resource evaluation using combined petrophysical analysis and seismically derived reservoir characterization, offshore Niger Delta, J. Pet. Explor. Prod. Technol. 8 (2018) 99–115. https://doi.org/10.1007/s13202-017-0391-6.

DOI: 10.1007/s13202-017-0391-6

Google Scholar

[32] J. Hay, Introduction to instrumented indentation testing, Exp. Tech. 33 (2009) 66–72. https://doi.org/10.1111/j.1747-1567.2009.00541.x.

Google Scholar

[33] C.-M. Cheng, Y.-T. Cheng, On the initial unloading slope in indentation of elastic-plastic solids by an indenter with axisymmetric smooth profile, Appl. Phys. Lett. 71 (1997) 2623. https://doi.org/https://doi.org/10.1063/1.120159.

DOI: 10.1063/1.120159

Google Scholar

[34] H. Gao, T.-W. Wu, A note on the elastic contact stiffness of a layered medium, J. Mater. Res. 8 (1993) 3229–3232. https://doi.org/https://doi.org/10.1557/JMR.1993.3229.

DOI: 10.1557/jmr.1993.3229

Google Scholar

[35] B. Poon, D. Rittel, G. Ravichandran, An analysis of nanoindentation in linearly elastic solids, Int. J. Solids Struct. 45 (2008) 6018–6033. https://doi.org/10.1016/j.ijsolstr.2008.07.021.

DOI: 10.1016/j.ijsolstr.2008.07.021

Google Scholar