[1]
A. Fonseca-García, E.J. Jiménez-Regalado, R.Y. Aguirre-Loredo, Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers, Carbohydrate Polymers, 251 (2021) 117009.
DOI: 10.1016/j.carbpol.2020.117009
Google Scholar
[2]
T. Jiang, Q. Duan, J. Zhu, H. Liu, L. Yu, Starch-based biodegradable materials: Challenges and opportunities, Advanced Industrial and Engineering Polymer Research, 3 (2020) 8-18.
DOI: 10.1016/j.aiepr.2019.11.003
Google Scholar
[3]
L. Huang, H. Zhao, T. Yi, M. Qi, H. Xu, Q. Mo, C. Huang, S. Wang, Y. Liu, Preparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films, Nanomaterials, 10 (2020) 755.
DOI: 10.3390/nano10040755
Google Scholar
[4]
H. Boudjema, H. Bendaikha, Studies on the properties of cellulose fibers reinforced thermoplastic starch composites, Journal of Chemistry and materials research, 3 (2015) 21-25.
Google Scholar
[5]
M. Ibrahim, H. Moustafa, E.N.A.E. Rahman, S. Mehanny, M.H. Hemida, E. El-Kashif, Reinforcement of starch based biodegradable composite using Nile rose residues, Journal of Materials Research and Technology, 9 (2020) 6160-6171.
DOI: 10.1016/j.jmrt.2020.04.018
Google Scholar
[6]
N.T. Simonassi, A.C. Pereira, S.N. Monteiro, F.M. Margem, R.J.S. Rodríguez, J.F.d. Deus, C.M.F. Vieira, J. Drelich, Reinforcement of polyester with renewable ramie fibers, Materials Research, 20 (2017) 51-59.
DOI: 10.1590/1980-5373-mr-2016-1046
Google Scholar
[7]
N.N. Nasir, S.A. Othman, Feasibility of Irradiated Corn-Based Bioplastics as Packaging Material, Solid State Phenomena 317 (2021): 241–50.
DOI: 10.4028/www.scientific.net/ssp.317.241
Google Scholar
[8]
S. Pirsa, F. Mohtarami, S. Kalantari, Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties, Chemical Review and Letters, 3 (2020) 98-103.
Google Scholar
[9]
H.L. Boudjema, H. Bendaikha, Composite materials derived from biodegradable starch polymer and Atriplex halimus fibers, e-Polymers, 15 (2015) 419-426.
DOI: 10.1515/epoly-2015-0118
Google Scholar
[10]
P. Boonsuk, A. Sukolrat, S. Bourkaew, K. Kaewtatip, S. Chantarak, A. Kelarakis, C. Chaibundit, Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites, International Journal of Biological Macromolecules, 167 (2021) 130-140.
DOI: 10.1016/j.ijbiomac.2020.11.157
Google Scholar
[11]
M. Hasan, D.A. Gopakumar, N. Olaiya, F. Zarlaida, A. Alfian, C. Aprinasari, T. Alfatah, S. Rizal, H.A. Khalil, Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films, International Journal of Biological Macromolecules, 156 (2020) 896-905.
DOI: 10.1016/j.ijbiomac.2020.04.039
Google Scholar
[12]
A. Mittal, S. Garg, S. Bajpai, Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application, Materials Today: Proceedings, 21 (2020) 1577-1582.
DOI: 10.1016/j.matpr.2019.11.210
Google Scholar
[13]
H. Zergane, S. Abdi, H. Xu, J. Hemming, X. Wang, S. Willför, Y. Habibi, Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates, Industrial Crops and Products, 144 (2020) 112044.
DOI: 10.1016/j.indcrop.2019.112044
Google Scholar
[14]
k.o. Maroc, Encyclopedia du Maroc, in: ISBN (Ensemble) 9981-03-000-7.
Google Scholar
[15]
L. Khaled, L. Azeddine, O. Khaled, K. Taibi, M. Azzaz, Elaboration and characterization of an activated carbon from Diss and Esparto grass for the wastewater treatment, Applied Mechanics and Materials, Trans Tech Publ, (2013) 1508-1514.
DOI: 10.4028/www.scientific.net/amm.295-298.1508
Google Scholar
[16]
F. Luzi, D. Puglia, F. Sarasini, J. Tirillò, G. Maffei, A. Zuorro, R. Lavecchia, J. Kenny, L. Torre, Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss), Carbohydrate Polymers, 209 (2019) 328-337.
DOI: 10.1016/j.carbpol.2019.01.048
Google Scholar
[17]
Z. Touati, H. Boulahia, N. Belhaneche-Bensemra, V. Massardier, Modification of diss fibers for biocomposites based on recycled low-density polyethylene and polypropylene blends, Waste and Biomass Valorization, 10 (2019) 2365-2378.
DOI: 10.1007/s12649-018-0225-x
Google Scholar
[18]
M. Abdelhak, Study of Some North African Grasses (Ampelodesma mauritanica and Esparto Grass), Grasses: Benefits, Diversities and Functional Roles, 43 (2017).
DOI: 10.5772/intechopen.70001
Google Scholar
[19]
A. Gheris, A. Hamrouni, Treatment of an expansive soil using vegetable (DISS) fibre, Innovative Infrastructure Solutions, 5 (2020) 1-17.
DOI: 10.1007/s41062-020-0281-5
Google Scholar
[20]
M. Merzoud, M.F. Habita, Elaboration de composite cimentaire à base de diss «Ampelodesma Mauritanica», Afrique Science: Revue Internationale Des Sciences Et Technologie, 4 (2008).
DOI: 10.4314/afsci.v4i2.61682
Google Scholar
[21]
N. Toudert, S. Djilani, A. Djilani, A. Dicko, R. Soulimani, Antimicrobial activity of the butanolic and methanolic extracts of Ampelodesma mauritanica, Advances in Natural and Applied Sciences, 3 (2009) 19-21.
Google Scholar
[22]
B. Mustapha, I. Bahim, B. Mourad, B. Abderrahim, Effect of fiber volume fraction in the tensile properties of renewable Diss fiber/polyester composite, Engineering Solid Mechanics, 4 (2016) 91-96.
DOI: 10.5267/j.esm.2015.11.002
Google Scholar
[23]
J. Yang, Y.C. Ching, C.H. Chuah, N.-S. Liou, Preparation and Characterization of Starch/Empty Fruit Bunch-Based Bioplastic Composites Reinforced with Epoxidized Oils Polymers, 13 (2021) 94.
DOI: 10.3390/polym13010094
Google Scholar
[24]
J.H.R. Llanos, C.C. Tadini, E. Gastaldi, New strategies to fabricate starch/chitosan-based composites by extrusion, Journal of Food Engineering, 290 (2021) 110224.
DOI: 10.1016/j.jfoodeng.2020.110224
Google Scholar
[25]
E. Basiak, A. Lenart, F. Debeaufort, How glycerol and water contents affect the structural and functional properties of starch-based edible films, Polymers, 10 (2018) 412.
DOI: 10.3390/polym10040412
Google Scholar
[26]
J.S. He, X. Hu, X.M. Zhu, Changes of the Fracture Toughness of ZG40Cr25Ni20 Furnace Tube after Service and the Corresponding Change of the Microstructure of the Fracture Surface, Applied Mechanics and Materials, 853 (2017) 262-265.
DOI: 10.4028/www.scientific.net/amm.853.262
Google Scholar
[27]
A. Wattanakornsiri, K. Pachana, S. Kaewpirom, P. Sawangwong, C. Migliaresi, Green composites of thermoplastic corn starch and recycled paper cellulose fibers, Songklanakarin Journal of Science & Technology, 33 (2011).
DOI: 10.1007/s10924-012-0494-6
Google Scholar
[28]
M. Morreale, R. Scaffaro, A. Maio, F. La Mantia, Effect of adding wood flour to the physical properties of a biodegradable polymer, Composites Part A: Applied Science and Manufacturing, 39 (2008) 503-513.
DOI: 10.1016/j.compositesa.2007.12.002
Google Scholar
[29]
K. Elfehri Borchani, C. Carrot, M. Jaziri, Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties, Composites Part A: Applied Science and Manufacturing, 78 (2015) 371-379.
DOI: 10.1016/j.compositesa.2015.08.023
Google Scholar
[30]
B. Issasfa, T. Benmansour, V. Valle, M. Bouakba, Experimental Study of Mechanical Behaviour of Renewable Fibre Reinforced Composite Materials Type (Cynara Cardunculus L/Polyester), Revue des Composites et des Matériaux Avancés, 30 (2020).
DOI: 10.18280/rcma.300101
Google Scholar