Elaboration and Charpy Test of Bioplastics Reinforced by Renewable Fibers: Starch /Diss

Article Preview

Abstract:

This work is based on an investigation study to develop bio-composite materials that are renewable, biodegradable, and environmentally safe. The fibers used in this work are extracted from the plant Ampelodesma Mauritanica, It is a wild plant that is produced in abundance in the Mediterranean regions. Through this work, an overview of Diss fibers was provided, developing bio-composite using different starch matrices reinforced by Diss fibers, and evaluate their mechanical behavior using Charpy-tests to determine standard test specimens to estimate Weibull parameters suitable for the composite using statistical methods based on Weibull distribution. The obtained results, it was found that the bio-composite starch/Diss 40% Glycerol and 5% fiber reinforcement (SG40/RF5) had better results compared to the rest of the bio-composite, The Charpy impact energy modulus was about 31.25 (KJ/m2), which is 2.1 times higher than that achieved Measured from SG40 matrix (40% glycerol), and 1.3 times higher than those fortified with 10% fiber SG40/RF10 (40% glycerol reinforcement 10% fiber), and the statistical study confirmed the distribution of the results obtained, especially Weibull, which has three parameters.

You might also be interested in these eBooks

Info:

Pages:

77-87

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fonseca-García, E.J. Jiménez-Regalado, R.Y. Aguirre-Loredo, Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers, Carbohydrate Polymers, 251 (2021) 117009.

DOI: 10.1016/j.carbpol.2020.117009

Google Scholar

[2] T. Jiang, Q. Duan, J. Zhu, H. Liu, L. Yu, Starch-based biodegradable materials: Challenges and opportunities, Advanced Industrial and Engineering Polymer Research, 3 (2020) 8-18.

DOI: 10.1016/j.aiepr.2019.11.003

Google Scholar

[3] L. Huang, H. Zhao, T. Yi, M. Qi, H. Xu, Q. Mo, C. Huang, S. Wang, Y. Liu, Preparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films, Nanomaterials, 10 (2020) 755.

DOI: 10.3390/nano10040755

Google Scholar

[4] H. Boudjema, H. Bendaikha, Studies on the properties of cellulose fibers reinforced thermoplastic starch composites, Journal of Chemistry and materials research, 3 (2015) 21-25.

Google Scholar

[5] M. Ibrahim, H. Moustafa, E.N.A.E. Rahman, S. Mehanny, M.H. Hemida, E. El-Kashif, Reinforcement of starch based biodegradable composite using Nile rose residues, Journal of Materials Research and Technology, 9 (2020) 6160-6171.

DOI: 10.1016/j.jmrt.2020.04.018

Google Scholar

[6] N.T. Simonassi, A.C. Pereira, S.N. Monteiro, F.M. Margem, R.J.S. Rodríguez, J.F.d. Deus, C.M.F. Vieira, J. Drelich, Reinforcement of polyester with renewable ramie fibers, Materials Research, 20 (2017) 51-59.

DOI: 10.1590/1980-5373-mr-2016-1046

Google Scholar

[7] N.N. Nasir, S.A. Othman, Feasibility of Irradiated Corn-Based Bioplastics as Packaging Material, Solid State Phenomena 317 (2021): 241–50.

DOI: 10.4028/www.scientific.net/ssp.317.241

Google Scholar

[8] S. Pirsa, F. Mohtarami, S. Kalantari, Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties, Chemical Review and Letters, 3 (2020) 98-103.

Google Scholar

[9] H.L. Boudjema, H. Bendaikha, Composite materials derived from biodegradable starch polymer and Atriplex halimus fibers, e-Polymers, 15 (2015) 419-426.

DOI: 10.1515/epoly-2015-0118

Google Scholar

[10] P. Boonsuk, A. Sukolrat, S. Bourkaew, K. Kaewtatip, S. Chantarak, A. Kelarakis, C. Chaibundit, Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites, International Journal of Biological Macromolecules, 167 (2021) 130-140.

DOI: 10.1016/j.ijbiomac.2020.11.157

Google Scholar

[11] M. Hasan, D.A. Gopakumar, N. Olaiya, F. Zarlaida, A. Alfian, C. Aprinasari, T. Alfatah, S. Rizal, H.A. Khalil, Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films, International Journal of Biological Macromolecules, 156 (2020) 896-905.

DOI: 10.1016/j.ijbiomac.2020.04.039

Google Scholar

[12] A. Mittal, S. Garg, S. Bajpai, Fabrication and characteristics of poly (vinyl alcohol)-starch-cellulosic material based biodegradable composite film for packaging application, Materials Today: Proceedings, 21 (2020) 1577-1582.

DOI: 10.1016/j.matpr.2019.11.210

Google Scholar

[13] H. Zergane, S. Abdi, H. Xu, J. Hemming, X. Wang, S. Willför, Y. Habibi, Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates, Industrial Crops and Products, 144 (2020) 112044.

DOI: 10.1016/j.indcrop.2019.112044

Google Scholar

[14] k.o. Maroc, Encyclopedia du Maroc, in: ISBN (Ensemble) 9981-03-000-7.

Google Scholar

[15] L. Khaled, L. Azeddine, O. Khaled, K. Taibi, M. Azzaz, Elaboration and characterization of an activated carbon from Diss and Esparto grass for the wastewater treatment, Applied Mechanics and Materials, Trans Tech Publ, (2013) 1508-1514.

DOI: 10.4028/www.scientific.net/amm.295-298.1508

Google Scholar

[16] F. Luzi, D. Puglia, F. Sarasini, J. Tirillò, G. Maffei, A. Zuorro, R. Lavecchia, J. Kenny, L. Torre, Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss), Carbohydrate Polymers, 209 (2019) 328-337.

DOI: 10.1016/j.carbpol.2019.01.048

Google Scholar

[17] Z. Touati, H. Boulahia, N. Belhaneche-Bensemra, V. Massardier, Modification of diss fibers for biocomposites based on recycled low-density polyethylene and polypropylene blends, Waste and Biomass Valorization, 10 (2019) 2365-2378.

DOI: 10.1007/s12649-018-0225-x

Google Scholar

[18] M. Abdelhak, Study of Some North African Grasses (Ampelodesma mauritanica and Esparto Grass), Grasses: Benefits, Diversities and Functional Roles, 43 (2017).

DOI: 10.5772/intechopen.70001

Google Scholar

[19] A. Gheris, A. Hamrouni, Treatment of an expansive soil using vegetable (DISS) fibre, Innovative Infrastructure Solutions, 5 (2020) 1-17.

DOI: 10.1007/s41062-020-0281-5

Google Scholar

[20] M. Merzoud, M.F. Habita, Elaboration de composite cimentaire à base de diss «Ampelodesma Mauritanica», Afrique Science: Revue Internationale Des Sciences Et Technologie, 4 (2008).

DOI: 10.4314/afsci.v4i2.61682

Google Scholar

[21] N. Toudert, S. Djilani, A. Djilani, A. Dicko, R. Soulimani, Antimicrobial activity of the butanolic and methanolic extracts of Ampelodesma mauritanica, Advances in Natural and Applied Sciences, 3 (2009) 19-21.

Google Scholar

[22] B. Mustapha, I. Bahim, B. Mourad, B. Abderrahim, Effect of fiber volume fraction in the tensile properties of renewable Diss fiber/polyester composite, Engineering Solid Mechanics, 4 (2016) 91-96.

DOI: 10.5267/j.esm.2015.11.002

Google Scholar

[23] J. Yang, Y.C. Ching, C.H. Chuah, N.-S. Liou, Preparation and Characterization of Starch/Empty Fruit Bunch-Based Bioplastic Composites Reinforced with Epoxidized Oils Polymers, 13 (2021) 94.

DOI: 10.3390/polym13010094

Google Scholar

[24] J.H.R. Llanos, C.C. Tadini, E. Gastaldi, New strategies to fabricate starch/chitosan-based composites by extrusion, Journal of Food Engineering, 290 (2021) 110224.

DOI: 10.1016/j.jfoodeng.2020.110224

Google Scholar

[25] E. Basiak, A. Lenart, F. Debeaufort, How glycerol and water contents affect the structural and functional properties of starch-based edible films, Polymers, 10 (2018) 412.

DOI: 10.3390/polym10040412

Google Scholar

[26] J.S. He, X. Hu, X.M. Zhu, Changes of the Fracture Toughness of ZG40Cr25Ni20 Furnace Tube after Service and the Corresponding Change of the Microstructure of the Fracture Surface, Applied Mechanics and Materials, 853 (2017) 262-265.

DOI: 10.4028/www.scientific.net/amm.853.262

Google Scholar

[27] A. Wattanakornsiri, K. Pachana, S. Kaewpirom, P. Sawangwong, C. Migliaresi, Green composites of thermoplastic corn starch and recycled paper cellulose fibers, Songklanakarin Journal of Science & Technology, 33 (2011).

DOI: 10.1007/s10924-012-0494-6

Google Scholar

[28] M. Morreale, R. Scaffaro, A. Maio, F. La Mantia, Effect of adding wood flour to the physical properties of a biodegradable polymer, Composites Part A: Applied Science and Manufacturing, 39 (2008) 503-513.

DOI: 10.1016/j.compositesa.2007.12.002

Google Scholar

[29] K. Elfehri Borchani, C. Carrot, M. Jaziri, Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties, Composites Part A: Applied Science and Manufacturing, 78 (2015) 371-379.

DOI: 10.1016/j.compositesa.2015.08.023

Google Scholar

[30] B. Issasfa, T. Benmansour, V. Valle, M. Bouakba, Experimental Study of Mechanical Behaviour of Renewable Fibre Reinforced Composite Materials Type (Cynara Cardunculus L/Polyester), Revue des Composites et des Matériaux Avancés, 30 (2020).

DOI: 10.18280/rcma.300101

Google Scholar