[1]
UN-Habitat, State of The World ' S Cities: Prosperity of Cities, World Urban Forum (2013), 10-101.
Google Scholar
[2]
F. Chendjouo, Promotion immobilière et resorption de la crise du logement, in Conférence annuelle des responsables des services centraux et déconcentrés du Ministère du developpement urbain et de l'habitat (Cameroun), 2011, p.1–3.
DOI: 10.3406/gazar.2004.3696
Google Scholar
[3]
C. Armando, L.I. Librelotto and C. Jacintho, Building with earth – Brazil ' s most popular raw earth building techniques and the opinion of experienced builders., 600 (2014), 123–131.
DOI: 10.4028/www.scientific.net/kem.600.123
Google Scholar
[4]
L. Ba, I. El Abbassi, C.S.E. Kane, A.M. Darcherif and M. Ndongo, The challenges of local and bio-sourced materials on thermal performance: Review, classification and opportunity, Int. J. Eng. Res. Africa 47 (2020), 85–101.
DOI: 10.4028/www.scientific.net/jera.47.85
Google Scholar
[5]
R. Bahar, M. Benazzoug and S. Kenai, Performance of compacted cement-stabilised soil, Cem. Concr. Compos. 26 (2004), 811–820.
DOI: 10.1016/j.cemconcomp.2004.01.003
Google Scholar
[6]
S. Deboucha and R. Hashim, A review on bricks and stabilized compressed earth blocks, Sci. Res. Essays 6 (2011), 499–506.
Google Scholar
[7]
B.M. Ganou Koungang, D. Ndapeu, G. Tchemou, A. Messan, E. Njeugna and L. Courard, Challenge to enhance the value of the Cameroonian coastal earth : physical tests and mechanical characterization of earth material, SN Appl. Sci. 2 (2020), 11.
DOI: 10.1007/s42452-020-3141-1
Google Scholar
[8]
J.C. Morel, A. Pkla and P. Walker, Compressive strength testing of compressed earth blocks, Constr. Build. Mater. 21 (2007), 303–309.
DOI: 10.1016/j.conbuildmat.2005.08.021
Google Scholar
[9]
S.S. Namango, Development of Cost-Effective Earthen Building Material for Housing Wall Construction : Investigations into the Properties of Compressed Earth Blocks Stabilized with Sisal Vegetable Fibres , Cassava Powder and Cement Compositions, Brandenburg Technical University Cottbus, (2006).
Google Scholar
[10]
G.E. Ntamack, T. Degho, T. Beda and S.C.D. Ouazzane, Determination of Mechanical Characteristics of Compressed and Stabilized Earth Blocks by Cement , by the Mixture Cement and Sawdust, and by the Lime through the Elasticity-Damaging Coupling Model, 2 (2012), 668-674.
Google Scholar
[11]
N. Rakotondrabezaharinoro, M. Ado and W.H.J. Tchamdjou, Assessment of raw mineral waste as building materials in developing countries, Int. J. Eng. Res. Africa 40 (2018), 30–46.
DOI: 10.4028/www.scientific.net/jera.40.30
Google Scholar
[12]
V. Rigassi and CRATerre-EAG, Compressed Earth Blocks : Manual of Production, IVol. I, Deutsches Zentrum für Entwicklungstechnologien - GATE in: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH in coordination with BASIN, Eschborn, (1985).
Google Scholar
[13]
J.B. Smith, S.H. Schneider, M. Oppenheimer, G.W. Yohe, W. Hare, M.D. Mastrandrea et al., Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC)reasons for concern,, Proc. Natl. Acad. Sci. 106 (2009), 4133–4137.
DOI: 10.1073/pnas.0812355106
Google Scholar
[14]
FFB, Les Matériaux Biosourcés Dans Le Bâtiment, Fédération Française du Bâtiment, Paris, (2015).
Google Scholar
[15]
S. Marceau, S. Caré and P. Lesage, Matériaux Biosourcés et Naturels Pour Une Construction Durable, Matériaux biosourcés et naturels pour une construction durable, (2016).
DOI: 10.51257/a-v1-n1280
Google Scholar
[16]
L. Zhang, Production of bricks from waste materials - A review, Constr. Build. Mater. 47 (2013), 643–655.
Google Scholar
[17]
P. Meukam, A. Noumowe and Y.J.R. Duval, Thermophisical and mechanical caracterization of stabilized clay bricks for building thermal insulation, Mater. Struct. 36 (2003), 453–460.
Google Scholar
[18]
B.M. Ganou Koungang, D. Ndapeu, G. Tchemou, E. Njeugna and L. Courard, Comportement hydromécanique des BTC avec granulats de Canarium schweinfurthii et Cocos nucifera: analyse de durabilité, in Colloque international des 4Oaires de l'Enset de Douala, 2019, p.10.
DOI: 10.1088/2053-1591/abbebb
Google Scholar
[19]
B.M. Ganou Koungang, D. Ndapeu, G. Tchemou, E. Njeugna and L. Courard, Formulation des briques de terre biosourcées a charges de granulats de Canarium schweinfurthii et Cocos nucifera, in 4ème Conférence scientifique des Doctorants et Jeunes chercheurs des Universités d'Etat/ Instituts privés l'Enseignement supérieur au Cameroun de Douala, 2019, p.15.
DOI: 10.1088/2053-1591/abbebb
Google Scholar
[20]
X. Li, Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing, (2004),.
DOI: 10.31390/gradschool_theses.866
Google Scholar
[21]
N. Neithalath, J. Weiss and J. Olek, Acoustic performance and damping behavior of cellulose-cement composites, Cem. Concr. Compos. 26 (2004), 359–370.
DOI: 10.1016/s0958-9465(03)00020-9
Google Scholar
[22]
B.A. Laibi, Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses, (2018),.
Google Scholar
[23]
Y. Millogo, J.C. Morel, J.E. Aubert and K. Ghavami, Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers, Constr. Build. Mater. 52 (2014), 71–78.
DOI: 10.1016/j.conbuildmat.2013.10.094
Google Scholar
[24]
M. Mostafa and N. Uddin, Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces, Case Stud. Constr. Mater. 5 (2016), 53-63.
DOI: 10.1016/j.cscm.2016.07.001
Google Scholar
[25]
D.Y.K. Toguyeni, A. Lawane, F. Zoma and G. Khamis, Formulation of Compressed Earth Blocks Stabilized With Lime and Hibiscus Sabdariffa Fibres Showcasing Good Thermal and Mechanical Properties, J. Mater. Sci. Surf. Eng. 6 (2018), 817–824.
Google Scholar
[26]
A.W. Bruno, D. Gallipoli, C. Perlot, J. Mendes and N. Salmon, Mechanical properties of unstabilized earth compressed at high pressures, Acad. J. Civ. Eng. 33 (2015), 85–92.
Google Scholar
[27]
M. Mostafa and N. Uddin, Effect of banana fibers on the compressive and flexural strength of compressed earth blocks, Buildings 5 (2015), 282–296.
DOI: 10.3390/buildings5010282
Google Scholar
[28]
B. Taallah, A. Guettala, S. Guettala and A. Kriker, Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers, Constr. Build. Mater. 59 (2014).
DOI: 10.1016/j.conbuildmat.2014.02.058
Google Scholar
[29]
T. Alomayri, F.U.A. Shaikh and I.M. Low, Characterisation of cotton fibre-reinforced geopolymer composites, Compos. Part B Eng. 50 (2013), 1–6.
DOI: 10.1016/j.compositesb.2013.01.013
Google Scholar
[30]
A. Babatoundé, Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses, Université de Normandie, (2018).
Google Scholar
[31]
A. Govin, A. Peschard and R. Guyonnet, Modification of cement hydration at early ages by natural and heated wood, Cem. Concr. Compos. 28 (2006), 12–20.
DOI: 10.1016/j.cemconcomp.2005.09.002
Google Scholar
[32]
T.G. Yashas, M. Sanjay and S. Siengchin, Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review, Front. Mater. 6 (2019), 226.
DOI: 10.3389/fmats.2019.00226
Google Scholar
[33]
S. Gholizadeh, a Review of Impact Behaviour in Composite Materials, Int. J. Mech. Prod. Eng. (2019), 2321–(2071).
Google Scholar
[34]
D. Fokwa, F. Ngapgue, M. Mpessa and T. Tamo Tatietse, Physical characterization of two Cameroon bamboo species: arundinaria alpina and oxytenantera abyssinica, Int. J. Eng. Technol. 4 (2012), 82-92.
Google Scholar
[35]
O.Y. Ogunsanwo, N. Terziev, D. Panov and G. Daniel, Bamboo (Bambusa vulgaris Schrad.) from moist forest and derived savanna locations in south West Nigeria-properties and gluability, (2015),.
DOI: 10.15376/biores.10.2.2823-2835
Google Scholar
[36]
J.A. Gomes Neto, N.P. Barbosa, A.L. Beraldo and A.B. de Melo, Physical and mechanical properties of the bambusa vulgaris as construction material, Eng. Agrícola 41 (2021), 119–126.
DOI: 10.1590/1809-4430-eng.agric.v41n2p119-126/2021
Google Scholar
[37]
O.O. Ijaola and A. Sangodoyin, Remediation of Emerging Pollutants in Industrial Contaminated Water using Oxytenanthera abyssinica and Bambusa vulgaris in a Treatment Media, IOP Conf. Ser. Mater. Sci. Eng. 1036 (2021), 012012.
DOI: 10.1088/1757-899x/1036/1/012012
Google Scholar
[38]
E.M. Mistar, T. Alfatah and M.D. Supardan, Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation, J. Mater. Res. Technol. 9 (2020), 6278–6286.
DOI: 10.1016/j.jmrt.2020.03.041
Google Scholar
[39]
Jaicaf, Fiber Plants of Africa and Their Usage, Japan Association for International Collaboration of Agriculture and Forestry (JAICAF), Tokyo, (2010).
Google Scholar
[40]
C. Prakash, Bamboo fibre, in Handbook of Natural Fibres, R. Kozłowski and M. Mackiewicz-Talarczyk, eds., Woodhead Publishing, Amsterdam, 2020, p.219–229.
Google Scholar
[41]
V. Sharma and A. Goel, Bamboo plant to fibre: An approach to various implications., Man-made Text. India 53 (2010),.
Google Scholar
[42]
N. Subekti, P. Widiyaningrum, T. Yoshimura and F. Fibriana, The strength and termite resistance characteristics of fiberboards produced from the renewable bamboo biomass, Wood Res. 63 (2018), 409–418.
Google Scholar
[43]
A. Shamsuri and N.M. Main, Review on The Paper Making Process From Bamboo As A Paper Product, Prog. Eng. Appl. Technol. 2 (2021), 965–971.
Google Scholar
[44]
F. Rusch, G.B. Ceolin and É. Hillig, Morphology, density and dimensions of bamboo fibers: A bibliographical compilation, Pesqui. Agropecu. Trop. 49 (2019),.
DOI: 10.1590/1983-40632019v4955007
Google Scholar
[45]
D1632 - 07, Standard Practice for Making and Curing Soil-Cement Compression and Flexure Test Specimens in the Laboratory (Withdrawn 2016), ASTM Int. (2007), 1–15.
DOI: 10.1520/d1632-96
Google Scholar
[46]
BS EN 12372, Méthodes d'essai pour pierres naturelles. Détermination de la résistance à la flexion sous charge centrée - Natural stone test methods. Determination of flexural strength under concentrated load, AFNOR (2007), 1–25.
DOI: 10.3403/30403938
Google Scholar
[47]
NF EN 196-1, Méthodes d'essais des ciments - Partie 1 : détermination des résistances, AFNOR (2016), 1–22.
Google Scholar
[48]
E.O. Cisneros-López, M.E. González-López, A.A. Pérez-Fonseca, R. González-Núñez, D. Rodrigue and J.R. Robledo-Ortíz, Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding, Compos. Interfaces 24 (2017), 35–53.
DOI: 10.1080/09276440.2016.1184556
Google Scholar
[49]
S. Subramonian, A. Ali, M. Amran, L.D. Sivakumar, S. Salleh and A. Rajaizam, Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites, Adv. Mech. Eng. 8 (2016), 1687814016664258.
DOI: 10.1177/1687814016664258
Google Scholar
[50]
G. Das and S. Biswas, Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites, J. Reinf. Plast. Compos. 35 (2016), 644–653.
DOI: 10.1177/0731684415626594
Google Scholar
[51]
J.-M. Berthelot and F.F. Ling, The Constituents of a Composite Material, in Composite Materials, Springer, New York, 1999, p.15–53.
Google Scholar
[52]
XP P13-901, Blocs de terre comprimée pour murs et cloisons, Définitions-Spécifications-Méthodes d'essais-Conditions de réception, AFNOR (2001), 1–37.
Google Scholar
[53]
H. Houben, P. Boubekeur, S. Doat, A. D'Ornano, P. Douline, H. Garnier et al., Compressed Earth Blocks: Standards, CDI & CRAterre, Brussels-Belgium, (1998).
Google Scholar
[54]
C.H. Weng, D.F. Lin and P.C. Chiang, Utilization of sludge as brick materials, Adv. Environ. Res. 7 (2003), 679–685.
Google Scholar
[55]
A. Sbiai, Matériaux composites à matrice époxyde chargée par des fibres de palmier dattier : effet de l'oxydation au tempo sur les fibres, Institut National des Sciences Appliquées de Lyon, (2011).
DOI: 10.3166/rcma.26.135-146
Google Scholar
[56]
P. Nshimiyimana, D. Miraucourt, A. Messan and L. Courard, Calcium Carbide Residue and Rice Husk Ash for improving the Compressive Strength of Compressed Earth Blocks, (2018), 4-9.
DOI: 10.1557/adv.2018.147
Google Scholar
[57]
V. Sharma, H.K. Vinayak and B.M. Marwaha, Enhancing compressive strength of soil using natural fibers, Constr. Build. Mater. 93 (2015),.
DOI: 10.1016/j.conbuildmat.2015.05.065
Google Scholar
[58]
CRAterre, H. Houben and H. Guillaud, Traité de Construction En Terre, 3rd ed.Éd. Parenthèses, Paris, (2006).
Google Scholar
[59]
S.O. Sore, A. Messan, E. Prud'Homme, G. Escadeillas and F. Tsobnang, Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso, Constr. Build. Mater. 165 (2018), 333–345.
DOI: 10.1016/j.conbuildmat.2018.01.051
Google Scholar
[60]
R.Y. Nkwaju, J.N.Y. Djobo, J.N.F. Nouping, P.W.M. Huisken, J.G.N. Deutou and L. Courard, Iron-rich laterite-bagasse fi bers based geopolymer composite: Mechanical, durability and insulating properties, Appl. Clay Sci. 183 (2019), 105333.
DOI: 10.1016/j.clay.2019.105333
Google Scholar