Effect of Hydroforming Drawing Cups on Thickness Variation and Surface Roughness

Article Preview

Abstract:

Recently, hydroforming was developed to address the emerging problems encountered by the conventional rigid tool-based deep drawing process. Hydroforming is a specialized type of die forming process, that uses a rigid die while the pressure provided by the liquid acts as a punch to shape the sheet metal. The current paper is directed to study the hydroforming process numerically and experimentally as a means for shaping aluminum alloy sheets based on the quality of product thickness variation and surface roughness. Moreover, it offered a comparative investigation of the experimental and numerical findings of this process. Therefore, thickness variation has been calculated numerically by designing a numerical model using Marc software which fits in large deformation simulation. On the other hand, thickness variation and surface roughness were measured experimentally along drawn cups and compared with the numerical results. The numerical results of thickness variation are matched with the experimental results. Furthermore, surface roughness was measured and compared before and after drawing at five regions. Since there is no contact between the upper side of a cup and any metallic parts, surface roughness depends only on the effect of plastic strain and was found to be increased in all regions.

You might also be interested in these eBooks

Info:

Pages:

1-18

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Pradeep Raja, T. Ramesh, Influence of size effects and its key issues during microforming and its associated processes – A review, Engineering Science and Technology, an International Journal, (2020).

DOI: 10.1016/j.jestch.2020.08.007

Google Scholar

[2] A. Kandil, An experimental study of hydroforming deep drawing, Journal of materials processing Technology, 134 (2003) 70-80.

DOI: 10.1016/s0924-0136(02)00922-6

Google Scholar

[3] K. Zheng, J.-H. Zheng, Z. He, G. Liu, D.J. Politis, L. Wang, Fundamentals, processes and equipment for hot medium pressure forming of light material tubular components, International Journal of Lightweight Materials and Manufacture, 3 (2020) 1-19.

DOI: 10.1016/j.ijlmm.2019.10.003

Google Scholar

[4] S.-H. Zhang, J. Danckert, Development of hydro-mechanical deep drawing, Journal of Materials Processing Technology, 83 (1998) 14-25.

DOI: 10.1016/s0924-0136(98)00039-9

Google Scholar

[5] S.-H. Zhang, Developments in hydroforming, Journal of Materials Processing Technology, 91 (1999) 236-244.

Google Scholar

[6] S. Zhang, Z. Wang, Y. Xu, Z. Wang, L. Zhou, Recent developments in sheet hydroforming technology, Journal of Materials Processing Technology, 151 (2004) 237-241.

DOI: 10.1016/j.jmatprotec.2004.04.054

Google Scholar

[7] K. Zheng, D.J. Politis, L. Wang, J. Lin, A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components, International Journal of Lightweight Materials and Manufacture, 1 (2018) 55-80.

DOI: 10.1016/j.ijlmm.2018.03.006

Google Scholar

[8] K. Siegert, M. Häussermann, B. Lösch, R. Rieger, Recent developments in hydroforming technology, Journal of Materials Processing Technology, 98 (2000) 251-258.

DOI: 10.1016/s0924-0136(99)00206-x

Google Scholar

[9] C. Hartl, Research and advances in fundamentals and industrial applications of hydroforming, Journal of Materials Processing Technology, 167 (2005) 383-392.

DOI: 10.1016/j.jmatprotec.2005.06.035

Google Scholar

[10] L. Lang, T. Li, X. Zhou, B.E. Kristensen, J. Danckert, K.B. Nielsen, Optimized decision of the exact material modes in the simulation for the innovative sheet hydroforming method, Journal of Materials Processing Technology, 177 (2006) 692-696.

DOI: 10.1016/j.jmatprotec.2006.04.100

Google Scholar

[11] L. Lang, J. Danckert, K.B. Nielsen, X. Zhou, Investigation into the forming of a complex cup locally constrained by a round die based on an innovative hydromechanical deep drawing method, Journal of Materials Processing Technology, 167 (2005) 191-200.

DOI: 10.1016/j.jmatprotec.2005.06.030

Google Scholar

[12] L. Lang, J. Danckert, K.B. Nielsen, Study on hydromechanical deep drawing with uniform pressure onto the blank, International Journal of Machine Tools and Manufacture, 44 (2004) 495-502.

DOI: 10.1016/j.ijmachtools.2003.10.028

Google Scholar

[13] L. Lang, J. Danckert, K.B. Nielsen, Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank, International Journal of Machine Tools and Manufacture, 44 (2004) 649-657.

DOI: 10.1016/j.ijmachtools.2003.11.004

Google Scholar

[14] L. Lang, J. Danckert, K.B. Nielsen, Multi-layer sheet hydroforming: Experimental and numerical investigation into the very thin layer in the middle, Journal of Materials Processing Technology, 170 (2005) 524-535.

DOI: 10.1016/j.jmatprotec.2005.06.033

Google Scholar

[15] L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part I. Experimental observations of the forming process of aluminum alloy, Journal of Materials Processing Technology, 148 (2004) 119-131.

DOI: 10.1016/j.jmatprotec.2004.01.053

Google Scholar

[16] L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part II. Numerical analysis of the drawing mechanism and the process parameters, Journal of materials processing technology, 166 (2005) 150-161.

DOI: 10.1016/j.jmatprotec.2004.08.015

Google Scholar

[17] H. Wang, L. Gao, M. Chen, Hydrodynamic deep drawing process assisted by radial pressure with inward flowing liquid, International Journal of Mechanical Sciences, 53 (2011) 793-799.

DOI: 10.1016/j.ijmecsci.2011.07.002

Google Scholar

[18] S. Fan, J. Mo, J. Fang, J. Xie, Electromagnetic pulse-assisted incremental drawing forming of aluminum alloy cylindrical part and its control strategy, The International Journal of Advanced Manufacturing Technology, 95 (2018) 2681-2690.

DOI: 10.1007/s00170-017-1245-6

Google Scholar

[19] X. Cui, J. Li, J. Mo, J. Fang, B. Zhou, X. Xiao, F. Feng, Incremental electromagnetic-assisted stamping (IEMAS) with radial magnetic pressure: a novel deep drawing method for forming aluminum alloy sheets, Journal of Materials Processing Technology, 233 (2016) 79-88.

DOI: 10.1016/j.jmatprotec.2016.02.013

Google Scholar

[20] J. Liu, Z. Wang, Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method, Computational Materials Science, 48 (2010) 381-389.

DOI: 10.1016/j.commatsci.2010.01.029

Google Scholar

[21] F. Pourboghrat, S. Venkatesan, J.E. Carsley, LDR and hydroforming limit for deep drawing of AA5754 aluminum sheet, Journal of Manufacturing Processes, 15 (2013) 600-615.

DOI: 10.1016/j.jmapro.2013.04.003

Google Scholar

[22] H.S. Halkaci, M. Turkoz, M. Dilmec, Enhancing formability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder, Journal of Materials Processing Technology, 214 (2014) 1638-1646.

DOI: 10.1016/j.jmatprotec.2014.03.008

Google Scholar

[23] H. Sato, K. Manabe, K. Ito, D. Wei, Z. Jiang, Development of servo-type micro-hydromechanical deep-drawing apparatus and micro deep-drawing experiments of circular cups, Journal of Materials Processing Technology, 224 (2015) 233-239.

DOI: 10.1016/j.jmatprotec.2015.05.014

Google Scholar

[24] W. Li, B. Meng, C. Wang, M. Wan, L. Xu, Effect of pre-forming and pressure path on deformation behavior in multi-pass hydrodynamic deep drawing process, International Journal of Mechanical Sciences, 121 (2017) 171-180.

DOI: 10.1016/j.ijmecsci.2017.01.010

Google Scholar

[25] K. Liu, L. Lang, G. Cai, X. Yang, C. Guo, B. Liu, A novel approach to determine plastic hardening curves of AA7075 sheet utilizing hydraulic bulging test at elevated temperature, International Journal of Mechanical Sciences, 100 (2015) 328-338.

DOI: 10.1016/j.ijmecsci.2015.07.002

Google Scholar

[26] W. Liu, Y. Xu, S. Yuan, Effect of pre-bulging on wrinkling of curved surface part by hydromechanical deep drawing, Procedia Engineering, 81 (2014) 914-920.

DOI: 10.1016/j.proeng.2014.10.117

Google Scholar

[27] L.-h. LANG, Y.-m. WANG, Y.-s. XIE, X.-y. YANG, Y.-q. XU, Pre-bulging effect during sheet hydroforming process of aluminum alloy box with unequal height and flat bottom, Transactions of Nonferrous Metals Society of China, 22 (2012) s302-s308.

DOI: 10.1016/s1003-6326(12)61723-3

Google Scholar

[28] X.-y. Yang, L.-h. Lang, K.-n. Liu, G. Chan, Modified MK model combined with ductile fracture criterion and its application in warm hydroforming, Transactions of Nonferrous Metals Society of China, 25 (2015) 3389-3398.

DOI: 10.1016/s1003-6326(15)63974-7

Google Scholar

[29] X. Yang, L. Lang, K. Liu, B. Liu, Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming, Chinese Journal of Aeronautics, 28 (2015) 1546-1554.

DOI: 10.1016/j.cja.2015.06.008

Google Scholar

[30] S.S. Panicker, S.K. Panda, Formability analysis of AA5754 alloy at warm condition: Appraisal of strain rate sensitive index, Materials Today: Proceedings, 2 (2015) 1996-2004.

DOI: 10.1016/j.matpr.2015.07.169

Google Scholar

[31] H. Gedikli, Ö.N. Cora, M. Koç, Comparative investigations on numerical modeling for warm hydroforming of AA5754-O aluminum sheet alloy, Materials & Design, 32 (2011) 2650-2662.

DOI: 10.1016/j.matdes.2011.01.025

Google Scholar

[32] Y.-m. Huang, S.-c. Lu, Analysis of elliptical cup drawing process of stainless sheet metal, Transactions of Nonferrous Metals Society of China, 21 (2011) 371-377.

DOI: 10.1016/s1003-6326(11)60724-3

Google Scholar

[33] A.A. Dhaiban, M.-E.S. Soliman, M. El-Sebaie, Finite element modeling and experimental results of brass elliptic cups using a new deep drawing process through conical dies, Journal of Materials Processing Technology, 214 (2014) 828-838.

DOI: 10.1016/j.jmatprotec.2013.11.025

Google Scholar

[34] S. Novotny, M. Geiger, Process design for hydroforming of lightweight metal sheets at elevated temperatures, Journal of Materials Processing Technology, 138 (2003) 594-599.

DOI: 10.1016/s0924-0136(03)00042-6

Google Scholar

[35] M. Parsa, P. Darbandi, Experimental and numerical analyses of sheet hydroforming process for production of an automobile body part, Journal of materials processing technology, 198 (2008) 381-390.

DOI: 10.1016/j.jmatprotec.2007.07.023

Google Scholar

[36] M. Hojjati, M. Zoorabadi, S. Hosseinipour, Optimization of superplastic hydroforming process of Aluminium alloy 5083, Journal of materials processing technology, 205 (2008) 482-488.

DOI: 10.1016/j.jmatprotec.2007.11.208

Google Scholar

[37] A.K. Sharma, D.K. Rout, Finite element analysis of sheet hydromechanical forming of circular cup, Journal of Materials Processing Technology, 209 (2009) 1445-1453.

DOI: 10.1016/j.jmatprotec.2008.03.070

Google Scholar

[38] L. Lang, T. Li, X. Zhou, J. Danckert, K.B. Nielsen, The effect of the key process parameters in the innovative hydroforming on the formed parts, Journal of materials processing technology, 187 (2007) 304-308.

DOI: 10.1016/j.jmatprotec.2006.11.196

Google Scholar

[39] S.K. Singh, D.R. Kumar, Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing, Journal of Materials Processing Technology, 204 (2008) 169-178.

DOI: 10.1016/j.jmatprotec.2007.11.060

Google Scholar

[40] P. Groche, D. Huttel, P.-P. Post, S. Schabel, Experimental and numerical investigation of the hydroforming behavior of paperboard, Production Engineering, 6 (2012) 229-236.

DOI: 10.1007/s11740-012-0365-y

Google Scholar

[41] B. Kucharska, O. Moraczyński, Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface, Archives of Civil and Mechanical Engineering, 20 (2020) 1-11.

DOI: 10.1007/s43452-020-00142-x

Google Scholar

[42] D.W. Pepper, J.C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL, CRC press, (2017).

DOI: 10.1201/9781315395104

Google Scholar