[1]
C. Pradeep Raja, T. Ramesh, Influence of size effects and its key issues during microforming and its associated processes – A review, Engineering Science and Technology, an International Journal, (2020).
DOI: 10.1016/j.jestch.2020.08.007
Google Scholar
[2]
A. Kandil, An experimental study of hydroforming deep drawing, Journal of materials processing Technology, 134 (2003) 70-80.
DOI: 10.1016/s0924-0136(02)00922-6
Google Scholar
[3]
K. Zheng, J.-H. Zheng, Z. He, G. Liu, D.J. Politis, L. Wang, Fundamentals, processes and equipment for hot medium pressure forming of light material tubular components, International Journal of Lightweight Materials and Manufacture, 3 (2020) 1-19.
DOI: 10.1016/j.ijlmm.2019.10.003
Google Scholar
[4]
S.-H. Zhang, J. Danckert, Development of hydro-mechanical deep drawing, Journal of Materials Processing Technology, 83 (1998) 14-25.
DOI: 10.1016/s0924-0136(98)00039-9
Google Scholar
[5]
S.-H. Zhang, Developments in hydroforming, Journal of Materials Processing Technology, 91 (1999) 236-244.
Google Scholar
[6]
S. Zhang, Z. Wang, Y. Xu, Z. Wang, L. Zhou, Recent developments in sheet hydroforming technology, Journal of Materials Processing Technology, 151 (2004) 237-241.
DOI: 10.1016/j.jmatprotec.2004.04.054
Google Scholar
[7]
K. Zheng, D.J. Politis, L. Wang, J. Lin, A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components, International Journal of Lightweight Materials and Manufacture, 1 (2018) 55-80.
DOI: 10.1016/j.ijlmm.2018.03.006
Google Scholar
[8]
K. Siegert, M. Häussermann, B. Lösch, R. Rieger, Recent developments in hydroforming technology, Journal of Materials Processing Technology, 98 (2000) 251-258.
DOI: 10.1016/s0924-0136(99)00206-x
Google Scholar
[9]
C. Hartl, Research and advances in fundamentals and industrial applications of hydroforming, Journal of Materials Processing Technology, 167 (2005) 383-392.
DOI: 10.1016/j.jmatprotec.2005.06.035
Google Scholar
[10]
L. Lang, T. Li, X. Zhou, B.E. Kristensen, J. Danckert, K.B. Nielsen, Optimized decision of the exact material modes in the simulation for the innovative sheet hydroforming method, Journal of Materials Processing Technology, 177 (2006) 692-696.
DOI: 10.1016/j.jmatprotec.2006.04.100
Google Scholar
[11]
L. Lang, J. Danckert, K.B. Nielsen, X. Zhou, Investigation into the forming of a complex cup locally constrained by a round die based on an innovative hydromechanical deep drawing method, Journal of Materials Processing Technology, 167 (2005) 191-200.
DOI: 10.1016/j.jmatprotec.2005.06.030
Google Scholar
[12]
L. Lang, J. Danckert, K.B. Nielsen, Study on hydromechanical deep drawing with uniform pressure onto the blank, International Journal of Machine Tools and Manufacture, 44 (2004) 495-502.
DOI: 10.1016/j.ijmachtools.2003.10.028
Google Scholar
[13]
L. Lang, J. Danckert, K.B. Nielsen, Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank, International Journal of Machine Tools and Manufacture, 44 (2004) 649-657.
DOI: 10.1016/j.ijmachtools.2003.11.004
Google Scholar
[14]
L. Lang, J. Danckert, K.B. Nielsen, Multi-layer sheet hydroforming: Experimental and numerical investigation into the very thin layer in the middle, Journal of Materials Processing Technology, 170 (2005) 524-535.
DOI: 10.1016/j.jmatprotec.2005.06.033
Google Scholar
[15]
L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part I. Experimental observations of the forming process of aluminum alloy, Journal of Materials Processing Technology, 148 (2004) 119-131.
DOI: 10.1016/j.jmatprotec.2004.01.053
Google Scholar
[16]
L. Lang, J. Danckert, K.B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part II. Numerical analysis of the drawing mechanism and the process parameters, Journal of materials processing technology, 166 (2005) 150-161.
DOI: 10.1016/j.jmatprotec.2004.08.015
Google Scholar
[17]
H. Wang, L. Gao, M. Chen, Hydrodynamic deep drawing process assisted by radial pressure with inward flowing liquid, International Journal of Mechanical Sciences, 53 (2011) 793-799.
DOI: 10.1016/j.ijmecsci.2011.07.002
Google Scholar
[18]
S. Fan, J. Mo, J. Fang, J. Xie, Electromagnetic pulse-assisted incremental drawing forming of aluminum alloy cylindrical part and its control strategy, The International Journal of Advanced Manufacturing Technology, 95 (2018) 2681-2690.
DOI: 10.1007/s00170-017-1245-6
Google Scholar
[19]
X. Cui, J. Li, J. Mo, J. Fang, B. Zhou, X. Xiao, F. Feng, Incremental electromagnetic-assisted stamping (IEMAS) with radial magnetic pressure: a novel deep drawing method for forming aluminum alloy sheets, Journal of Materials Processing Technology, 233 (2016) 79-88.
DOI: 10.1016/j.jmatprotec.2016.02.013
Google Scholar
[20]
J. Liu, Z. Wang, Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method, Computational Materials Science, 48 (2010) 381-389.
DOI: 10.1016/j.commatsci.2010.01.029
Google Scholar
[21]
F. Pourboghrat, S. Venkatesan, J.E. Carsley, LDR and hydroforming limit for deep drawing of AA5754 aluminum sheet, Journal of Manufacturing Processes, 15 (2013) 600-615.
DOI: 10.1016/j.jmapro.2013.04.003
Google Scholar
[22]
H.S. Halkaci, M. Turkoz, M. Dilmec, Enhancing formability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder, Journal of Materials Processing Technology, 214 (2014) 1638-1646.
DOI: 10.1016/j.jmatprotec.2014.03.008
Google Scholar
[23]
H. Sato, K. Manabe, K. Ito, D. Wei, Z. Jiang, Development of servo-type micro-hydromechanical deep-drawing apparatus and micro deep-drawing experiments of circular cups, Journal of Materials Processing Technology, 224 (2015) 233-239.
DOI: 10.1016/j.jmatprotec.2015.05.014
Google Scholar
[24]
W. Li, B. Meng, C. Wang, M. Wan, L. Xu, Effect of pre-forming and pressure path on deformation behavior in multi-pass hydrodynamic deep drawing process, International Journal of Mechanical Sciences, 121 (2017) 171-180.
DOI: 10.1016/j.ijmecsci.2017.01.010
Google Scholar
[25]
K. Liu, L. Lang, G. Cai, X. Yang, C. Guo, B. Liu, A novel approach to determine plastic hardening curves of AA7075 sheet utilizing hydraulic bulging test at elevated temperature, International Journal of Mechanical Sciences, 100 (2015) 328-338.
DOI: 10.1016/j.ijmecsci.2015.07.002
Google Scholar
[26]
W. Liu, Y. Xu, S. Yuan, Effect of pre-bulging on wrinkling of curved surface part by hydromechanical deep drawing, Procedia Engineering, 81 (2014) 914-920.
DOI: 10.1016/j.proeng.2014.10.117
Google Scholar
[27]
L.-h. LANG, Y.-m. WANG, Y.-s. XIE, X.-y. YANG, Y.-q. XU, Pre-bulging effect during sheet hydroforming process of aluminum alloy box with unequal height and flat bottom, Transactions of Nonferrous Metals Society of China, 22 (2012) s302-s308.
DOI: 10.1016/s1003-6326(12)61723-3
Google Scholar
[28]
X.-y. Yang, L.-h. Lang, K.-n. Liu, G. Chan, Modified MK model combined with ductile fracture criterion and its application in warm hydroforming, Transactions of Nonferrous Metals Society of China, 25 (2015) 3389-3398.
DOI: 10.1016/s1003-6326(15)63974-7
Google Scholar
[29]
X. Yang, L. Lang, K. Liu, B. Liu, Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming, Chinese Journal of Aeronautics, 28 (2015) 1546-1554.
DOI: 10.1016/j.cja.2015.06.008
Google Scholar
[30]
S.S. Panicker, S.K. Panda, Formability analysis of AA5754 alloy at warm condition: Appraisal of strain rate sensitive index, Materials Today: Proceedings, 2 (2015) 1996-2004.
DOI: 10.1016/j.matpr.2015.07.169
Google Scholar
[31]
H. Gedikli, Ö.N. Cora, M. Koç, Comparative investigations on numerical modeling for warm hydroforming of AA5754-O aluminum sheet alloy, Materials & Design, 32 (2011) 2650-2662.
DOI: 10.1016/j.matdes.2011.01.025
Google Scholar
[32]
Y.-m. Huang, S.-c. Lu, Analysis of elliptical cup drawing process of stainless sheet metal, Transactions of Nonferrous Metals Society of China, 21 (2011) 371-377.
DOI: 10.1016/s1003-6326(11)60724-3
Google Scholar
[33]
A.A. Dhaiban, M.-E.S. Soliman, M. El-Sebaie, Finite element modeling and experimental results of brass elliptic cups using a new deep drawing process through conical dies, Journal of Materials Processing Technology, 214 (2014) 828-838.
DOI: 10.1016/j.jmatprotec.2013.11.025
Google Scholar
[34]
S. Novotny, M. Geiger, Process design for hydroforming of lightweight metal sheets at elevated temperatures, Journal of Materials Processing Technology, 138 (2003) 594-599.
DOI: 10.1016/s0924-0136(03)00042-6
Google Scholar
[35]
M. Parsa, P. Darbandi, Experimental and numerical analyses of sheet hydroforming process for production of an automobile body part, Journal of materials processing technology, 198 (2008) 381-390.
DOI: 10.1016/j.jmatprotec.2007.07.023
Google Scholar
[36]
M. Hojjati, M. Zoorabadi, S. Hosseinipour, Optimization of superplastic hydroforming process of Aluminium alloy 5083, Journal of materials processing technology, 205 (2008) 482-488.
DOI: 10.1016/j.jmatprotec.2007.11.208
Google Scholar
[37]
A.K. Sharma, D.K. Rout, Finite element analysis of sheet hydromechanical forming of circular cup, Journal of Materials Processing Technology, 209 (2009) 1445-1453.
DOI: 10.1016/j.jmatprotec.2008.03.070
Google Scholar
[38]
L. Lang, T. Li, X. Zhou, J. Danckert, K.B. Nielsen, The effect of the key process parameters in the innovative hydroforming on the formed parts, Journal of materials processing technology, 187 (2007) 304-308.
DOI: 10.1016/j.jmatprotec.2006.11.196
Google Scholar
[39]
S.K. Singh, D.R. Kumar, Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing, Journal of Materials Processing Technology, 204 (2008) 169-178.
DOI: 10.1016/j.jmatprotec.2007.11.060
Google Scholar
[40]
P. Groche, D. Huttel, P.-P. Post, S. Schabel, Experimental and numerical investigation of the hydroforming behavior of paperboard, Production Engineering, 6 (2012) 229-236.
DOI: 10.1007/s11740-012-0365-y
Google Scholar
[41]
B. Kucharska, O. Moraczyński, Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface, Archives of Civil and Mechanical Engineering, 20 (2020) 1-11.
DOI: 10.1007/s43452-020-00142-x
Google Scholar
[42]
D.W. Pepper, J.C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL, CRC press, (2017).
DOI: 10.1201/9781315395104
Google Scholar