Physico-Chemical and Thermomechanical Analysis and ‎Characterization of ‎a Thermoplastic Composite Material Reinforced by Washingtonia Filifera Novel Vegetable Fibers

Article Preview

Abstract:

In this paper, ‎morphological, physico-chemical and thermal properties investigations‎ are carried out for a ‎novel ‎composite material reinforced by Washingtonia Filifera (WF) palm fibers using a 20 weight (wt) % loading rate. The experimental analysis by Scanning Electron Microscopy (SEM) shows the longitudinal roughness of the surface, which plays a very important role in the adhesion between the WF fibers and the High Density ‎PolyethylenE (HDPE) resin. FTIR tests of the composite (WF 20%/ HDPE) represent out of plane vibrations involving ring and CH2 symmetric bending in cellulose chain.‎ Thermogravimetric analysis (TGA) and Derivative thermogravimetric ‎(DTG) thermal analysis show a thermal stability at 210°C, 2.5% residual mass ‎and 745 °C maximum ‎temperature. X-Ray Diffraction (XRD) analysis shows that the ‎crystallinity index is 59.2%, with a size of ‎‎23 nm. Using tensile tests, a Young modulus of 858.6 MPa, ‎17% elongation and a maximum stress of 15 MPa ‎are found. The obtained characteristics of WF reinforced composite are better than those of Bamboo reinforced composites which has been proven to have characteristics superior to those of standard particleboard and medium density fiberboard used mainly in the construction industry.

You might also be interested in these eBooks

Info:

Pages:

43-55

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Ba, I. El Abbassi, C.S.E. Kane, A.M. Darcherif, M. Ndongo, The challenges of local and bio-sourced materials on thermal performance: Review, classification and opportunity, Int. J. Eng. Res. Africa 47 (2020) 85–101.

DOI: 10.4028/www.scientific.net/jera.47.85

Google Scholar

[2] M. Golzar, M. Poorzeinolabedin, Prototype fabrication of a composite automobile body based on integrated structure, Int. J. Adv. Manuf. Technol. 49 (2010) 1037–1045.

DOI: 10.1007/s00170-009-2452-6

Google Scholar

[3] K. Lau, P. Hung, M.-H. Zhu, D. Hui, Properties of natural fibre composites for structural engineering applications, Compos. Part B Eng. 136 (2018) 222–233.

DOI: 10.1016/j.compositesb.2017.10.038

Google Scholar

[4] H. Khelifa, A. Bezazi, H. Boumediri, G. Garcia del Pino, P.N.B. Reis, F. Scarpa, A. Dufresne, Mechanical characterization of mortar reinforced by date palm mesh fibers: Experimental and statistical analysis, Constr. Build. Mater. 300 (2021) 124067.

DOI: 10.1016/j.conbuildmat.2021.124067

Google Scholar

[5] N. Bouhemame, K.E. Aiadi, A. Bezazi, H. Boumediri, P.N.B. Reis, A. Imad, F. Scarpa, Tensile Properties Optimization of Date Palm Leaflets Using Taguchi Method, J. Nat. Fibers (2021) 1–17.

DOI: 10.1080/15440478.2021.1916674

Google Scholar

[6] G.G. del Pino, A. Bezazi, H. Boumediri, A.C. Kieling, C.C. Silva, J. Dehaini, J.L.V. Rivera, M. das G. da S. Valenzuela, F.R.V. Díaz, T.H. Panzera, Hybrid epoxy composites made from treated curauá fibres and organophilic clay, J. Compos. Mater. 55 (2021) 57–69.

DOI: 10.1177/0021998320945785

Google Scholar

[7] P. Anand, V. Anbumalar, Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber, Polym. Korea 39 (2015) 46–55.

DOI: 10.7317/pk.2015.39.1.46

Google Scholar

[8] D.E. Gaagaia, M. Bouakba, A. Layachi, Thermo-physico-chemical and statistical mechanical properties of Washingtonian filifera new lignocellulosic fiber, Eng. Solid Mech. 7 (2019) 137–150.

DOI: 10.5267/j.esm.2019.3.002

Google Scholar

[9] H. Boumediri, A. Bezazi, G.G. Del Pino, A. Haddad, F. Scarpa, A. Dufresne, Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite, Carbohydr. Polym. 222 (2019) 114997.

DOI: 10.1016/j.carbpol.2019.114997

Google Scholar

[10] J.S. Binoj, R.E. Raj, V.S. Sreenivasan, G.R. Thusnavis, Morphological, Physical, Mechanical, Chemical and Thermal Characterization of Sustainable Indian Areca Fruit Husk Fibers (Areca Catechu L) as Potential Alternate for Hazardous Synthetic Fibers, J. Bionic Eng. 13 (2016) 156–165.

DOI: 10.1016/s1672-6529(14)60170-0

Google Scholar

[11] A. Jordá-Vilaplana, A. Carbonell-Verdú, M.D. Samper, A. Pop, D. Garcia-Sanoguera, Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers, Compos. Sci. Technol. 145 (2017) 1–9.

DOI: 10.1016/j.compscitech.2017.03.036

Google Scholar

[12] B. Mustapha, I. Bahim, B. Mourad, B. Abderrahim, Effect of fiber volume fraction in the tensile properties of renewable Diss fiber /polyester composite, Eng. Solid Mech. 4 (2016) 91–96.

DOI: 10.5267/j.esm.2015.11.002

Google Scholar

[13] M. Maache, A. Bezazi, S. Amroune, F. Scarpa, A. Dufresne, Characterization of a novel natural cellulosic fiber from Juncus effusus L, Carbohydr. Polym. 171 (2017) 163–172.

DOI: 10.1016/j.carbpol.2017.04.096

Google Scholar

[14] S.N.A. Khalid, A.E. Ismail, M.H. Zainulabidin, A.M. Tajul Arifin, M.F. Hassan, M.R. Ibrahim, M.Z. Rahim, Mechanical performances of twill kenaf woven fiber reinforced polyester composites, Int. J. Integr. Eng. 10 (2018) 49–59.

Google Scholar

[15] C. V Srinivasa, A. Arifulla, N. Goutham, T. Santhosh, H.J. Jaeethendra, R.B. Ravikumar, S.G. Anil, D.G.S. Kumar, J. Ashish, Static bending and impact behaviour of areca fibers composites, Mater. Des. 32 (2011) 2469–2475.

DOI: 10.1016/j.matdes.2010.11.020

Google Scholar

[16] R. Punyamurthy, D. Sampathkumar, B. Bennehalli, R.P.G. Rangana Gouda, C. V. Srinivasa, Influence of fiber content and effect of chemical pre-treatments on mechanical characterization of natural abaca epoxy composites, Indian J. Sci. Technol. 8 (2015).

DOI: 10.17485/ijst/2015/v8i11/71768

Google Scholar

[17] S. Chaitanya, I. Singh, Novel Aloe Vera fiber reinforced biodegradable composites - Development and characterization, J. Reinf. Plast. Compos. 35 (2016) 1411–1423.

DOI: 10.1177/0731684416652739

Google Scholar

[18] Y. Lei, Q. Wu, F. Yao, Y. Xu, Preparation and properties of recycled HDPE / natural fiber composites, 38 (2007) 1664–1674.

DOI: 10.1016/j.compositesa.2007.02.001

Google Scholar

[19] D.N. Saheb, J.P. Jog, Natural fiber polymer composites: a review, Adv. Polym. Technol. J. Polym. Process. Inst. 18 (1999) 351–363.

DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Google Scholar

[20] Z. Belouadah, A. Ati, M. Rokbi, Characterization of new natural cellulosic fiber from Lygeum spartum L, Carbohydr. Polym. 134 (2015) 429–437.

DOI: 10.1016/j.carbpol.2015.08.024

Google Scholar

[21] P. Senthamaraikannan, M. Kathiresan, Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandisL, Carbohydr. Polym. 186 (2018) 332–343.

DOI: 10.1016/j.carbpol.2018.01.072

Google Scholar

[22] D. Liu, G. Han, J. Huang, Y. Zhang, Composition and structure study of natural Nelumbo nucifera fiber, Carbohydr. Polym. 75 (2009) 39–43.

DOI: 10.1016/j.carbpol.2008.06.003

Google Scholar

[23] N. Sgriccia, M.C. Hawley, M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Compos. Part A 39 (2008) 1632–1637.

DOI: 10.1016/j.compositesa.2008.07.007

Google Scholar

[24] V. Fiore, T. Scalici, A. Valenza, Characterization of a new natural fiber from Arundo donax L as potential reinforcement of polymer composites, Carbohydr. Polym. 106 (2014) 77–83.

DOI: 10.1016/j.carbpol.2014.02.016

Google Scholar

[25] A. Saaidia, A. Bezazi, A. Belbah, H. Bouchelaghem, F. Scarpa, S. Amirouche, Mechano-physical properties and statistical design of jute yarns, Meas. J. Int. Meas. Confed. 111 (2017) 284–294.

DOI: 10.1016/j.measurement.2017.07.054

Google Scholar

[26] S. Cotugno, D. Larobina, G. Mensitieri, P. Musto, G. Ragosta, A novel spectroscopic approach to investigate transport processes in polymers: The case of water-epoxy system, Polymer (Guildf). 42 (2001) 6431–6438.

DOI: 10.1016/s0032-3861(01)00096-9

Google Scholar

[27] P. Manimaran, P. Senthamaraikannan, K. Murugananthan, M.R. Sanjay, Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant, J. Nat. Fibers 15 (2018) 29–38.

DOI: 10.1080/15440478.2017.1302388

Google Scholar

[28] M. Jaouadi, S. M'sahli, F. Sakli, Optimization and characterization of pulp extracted from the Agave americana L fibers, Text. Res. J. 79 (2009) 110–120.

DOI: 10.1177/0040517508090781

Google Scholar

[29] V. Fiore, G. Di Bella, A. Valenza, The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites, Compos. Part B Eng. 68 (2015) 14–21.

DOI: 10.1016/j.compositesb.2014.08.025

Google Scholar

[30] N.M. Stark, L.M. Matuana, C.M. Clemons, Effect of Processing Method on Accelerated Weathering of Woodflour-HDPE Composites, Fpl.Fs.Fed.Us (2003) 79–88.

Google Scholar

[31] M. Fan, D. Dai, B. Huang, Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform - Mater. Anal. (2012).

DOI: 10.5772/35482

Google Scholar

[32] I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli, F. Sarasini, Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites, Compos. Sci. Technol. 70 (2010) 116–122.

DOI: 10.1016/j.compscitech.2009.09.013

Google Scholar

[33] M. Le Troedec, D. Sedan, C. Peyratout, J.P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, P. Krausz, Influence of various chemical treatments on the composition and structure of hemp fibres, Compos. Part A Appl. Sci. Manuf. 39 (2008) 514–522.

DOI: 10.1016/j.compositesa.2007.12.001

Google Scholar

[34] S. Indran, R.E. Raj, Characterization of new natural cellulosic fiber from Cissus quadrangularis stem, Carbohydr. Polym. 117 (2015) 392–399.

DOI: 10.1016/j.carbpol.2014.09.072

Google Scholar

[35] T. Scalici, V. Fiore, A. Valenza, Effect of plasma treatment on the properties of Arundo Donax L leaf fibres and its bio-based epoxy composites: A preliminary study, Compos. Part B Eng. 94 (2016) 167–175.

DOI: 10.1016/j.compositesb.2016.03.053

Google Scholar

[36] V. Fiore, A. Valenza, G. Di Bella, Artichoke (Cynara cardunculus L) fibres as potential reinforcement of composite structures, Compos. Sci. Technol. 71 (2011) 1138–1144.

DOI: 10.1016/j.compscitech.2011.04.003

Google Scholar

[37] T. Liu, Y. Lei, Q. Wang, S. Lee, Q. Wu, Effect of Fiber Type and Coupling Treatment on Properties of High-Density Polyethylene/Natural Fiber Composites, BioResources 8 (2013) 4619–4632.

DOI: 10.15376/biores.8.3.4619-4632

Google Scholar

[38] I.S. Aji, E.S. Zainudin, A. Khalina, S.M. Sapuan, M.D. Khairul, Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis, J. Therm. Anal. Calorim. 109 (2012) 893–900.

DOI: 10.1007/s10973-011-1807-z

Google Scholar

[39] L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Text. Res. J. 29 (1959) 786–794.

DOI: 10.1177/004051755902901003

Google Scholar

[40] N. Sakji, M. Jabli, F. Khoffi, N. Tka, R. Zouhaier, W. Ibala, H. Mohamed, B. Durand, Physico-chemical characteristics of a seed fiber arised from Pergularia Tomentosa L, Fibers Polym. 17 (2016) 2095–2104.

DOI: 10.1007/s12221-016-6461-4

Google Scholar

[41] S.S. Saravanakumar, A. Kumaravel, T. Nagarajan, P. Sudhakar, R. Baskaran, Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark, Carbohydr. Polym. 92 (2013) 1928–(1933).

DOI: 10.1016/j.carbpol.2012.11.064

Google Scholar

[42] D. Li, L. Zhou, X. Wang, L. He, X. Yang, Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property, Materials (Basel). 12 (2019) 1746.

DOI: 10.3390/ma12111746

Google Scholar

[43] J. Jayaramudu, B.R. Guduri, A.V. Rajulu, Characterization of new natural cellulosic fabric Grewia tilifolia, Carbohydr. Polym. 79 (2010) 847–851.

DOI: 10.1016/j.carbpol.2009.10.046

Google Scholar

[44] A. Abdal-hay, N.P.G. Suardana, D.Y. Jung, K.-S. Choi, J.K. Lim, Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites, Int. J. Precis. Eng. Manuf. 13 (2012) 1199–1206.

DOI: 10.1007/s12541-012-0159-3

Google Scholar

[45] T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, R. Rajasekar, Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites, Compos. Interfaces 20 (2013) 575–593.

DOI: 10.1080/15685543.2013.816652

Google Scholar

[46] V.S. Sreenivasan, D. Ravindran, V. Manikandan, R. Narayanasamy, Mechanical properties of randomly oriented short Sansevieria cylindrica fibre/polyester composites, Mater. Des. 32 (2011) 2444–2455.

DOI: 10.1016/j.matdes.2010.11.042

Google Scholar

[47] M. Sarikanat, Y. Seki, K. Sever, C. Durmus, Determination of properties ofAlthaea officinalisL (Marshmallow) fibres as a potential plant fibre in polymeric composite materials, Compos. Part B 57 (2014) 180–186.

DOI: 10.1016/j.compositesb.2013.09.041

Google Scholar

[48] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels 3 (2010) 10.

DOI: 10.1186/1754-6834-3-10

Google Scholar

[49] X. Ju, M. Bowden, E.E. Brown, X. Zhang, An improved X-ray diffraction method for cellulose crystallinity measurement, Carbohydr. Polym. 123 (2015) 476–481.

DOI: 10.1016/j.carbpol.2014.12.071

Google Scholar

[50] C. Wang, L. Cai, S.Q. Shi, G. Wang, H. Cheng, S. Zhang, Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content, Renew. Energy 134 (2019) 436–445.

DOI: 10.1016/j.renene.2018.09.051

Google Scholar

[51] X. Colom, F. Carrasco, P. Pages, J. Canavate, Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites, Compos. Sci. Technol. 63 (2003) 161–169.

DOI: 10.1016/s0266-3538(02)00248-8

Google Scholar

[52] S. Mohanty, S.K. Nayak, Short bamboo fiber-reinforced HDPE composites: influence of fiber content and modification on strength of the composite, J. Reinf. Plast. Compos. 29 (2010) 2199–2210.

DOI: 10.1177/0731684409345618

Google Scholar