[1]
N. Iwamuro, S. Member, T. Laska, IGBT History, State-of-the-Art, and Future Prospects, IEEE Trans. Electron Devices. (2017) 1–12. https://doi.org/10.1109/TED.2017.2654599.
DOI: 10.1109/ted.2017.2654599
Google Scholar
[2]
W. Huai, M. Liserre, F. Blaabjerg, P. De Place Rimmen, J.B. Jacobsen, T. Kvisgaard, J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics, IEEE J. Emerg. Sel. Top. Power Electron. 2 (2014) 97–114. https://doi.org/10.1109/ JESTPE.2013.2290282.
DOI: 10.1109/jestpe.2013.2290282
Google Scholar
[3]
X.G. C.Zhang, J.Shen, X.Xiao, Q.Deng, H.Wang, A New Design Method of IGBT Module with Embedded Vapor Chamber for Optimal Heat Radiation, IEEE 1st Int. Power Electron. Appl. Symp. (2021). https://doi.org/10.1109/PEAS53589.2021.9628676.
DOI: 10.1109/peas53589.2021.9628676
Google Scholar
[4]
S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, P. Tavner, An industry-based survey of reliability in power electronic converters, IEEE Trans. Ind. Appl. 47 (2011) 1441–1451. https://doi.org/10.1109/TIA.2011.2124436.
DOI: 10.1109/tia.2011.2124436
Google Scholar
[5]
A. Abuelnaga, M. Narimani, A.S. Bahman, A review on IGBT module failure modes and lifetime testing, IEEE Access. 9 (2021) 9643–9663. https://doi.org/10.1109/ACCESS. 2021.3049738.
DOI: 10.1109/access.2021.3049738
Google Scholar
[6]
L. Dupont, Y. Avenas, P.E. Vidal, Évaluation De La Température Des Composants Actifs De Puissance, 33 (2017).
DOI: 10.51257/a-v1-d3114
Google Scholar
[7]
D.L. Blackburn, Temperature measurements of semiconductor devices - a review, Twentieth Annual IEEE Semiconductor Thermal Measurement, and Management Symposium (IEEE Cat. No.04CH37545). (2004) 70–80. https://doi.org/10.1109/STHERM.2004.1291304.
DOI: 10.1109/stherm.2004.1291285
Google Scholar
[8]
R. Schmidt, U. Scheuermann, Using the chip as a temperature sensor - The influence of steep lateral temperature gradients on the Vce(T)-measurement, 2009 13th Eur. Conf. Power Electron. Appl. EPE '09. (2009). https://doi.org/10.1080/09398368.2011.11463790.
DOI: 10.1080/09398368.2011.11463790
Google Scholar
[9]
Y. Avenas, L. Dupont, Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions – Comparison with infrared measurements, Microelectron. Reliab. 52 (2012) 2617–2626. https://doi.org/10.1016/j.microrel.2012.03.032.
DOI: 10.1016/j.microrel.2012.03.032
Google Scholar
[10]
B. Thollin, L. Dupont, Z. Khatir, Y. Avenas, J.C. Crebier, P.O. Jeannin, Partial thermal impedance measurement for die interconnection characterization by a microsecond pulsed heating curve technique,, 2013 15th Eur. Conf. Power Electron. Appl. EPE 2013. (2013). https://doi.org/10.1109/EPE.2013.6634411.
DOI: 10.1109/epe.2013.6634411
Google Scholar
[11]
Z. Jakopovic, Z. Bencic, F. Kolonic, Important properties of transient thermal impedance for MOS-gated power semiconductors, IEEE Int. Symp. Ind. Electron. 2 (1999) 574–578. https://doi.org/10.1109/isie.1999.798675.
DOI: 10.1109/isie.1999.798675
Google Scholar
[12]
A. Wintrich, N. Ulrich, T. Werner, T. Reimann, Application Manual Power Semiconductors, 2015. https://www.semikron.com/service-support/application-manual.html.
Google Scholar
[13]
U.M. Choi, F. Blaabjerg, S. Jørgensen, Power Cycling Test Methods for Reliability Assessment of Power Device Modules in Respect to Temperature Stress, IEEE Trans. Power Electron. 33 (2018) 2531–2551. https://doi.org/10.1109/TPEL.2017.2690500.
DOI: 10.1109/tpel.2017.2690500
Google Scholar
[14]
E. Deng, Z. Zhao, Q. Xin, J. Zhang, Y. Huang, Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs, Microelectron. Reliab. 78 (2017) 25–37. https://doi.org/10.1016/j.microrel.2017.07.095.
DOI: 10.1016/j.microrel.2017.07.095
Google Scholar
[15]
C. Wang, Y. He, Y. Jiang, L. Li, An anti-interference online monitoring method for IGBT bond wire aging, Electron. 10 (2021). https://doi.org/10.3390/electronics10121449.
DOI: 10.3390/electronics10121449
Google Scholar
[16]
C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, P. Rodriguez, An overview of the reliability prediction related aspects of high power IGBTs in wind power applications, Microelectronics Reliability, Elsevier Ltd, 2011: p.1903–1907. https://doi.org/10.1016/j.microrel.2011.06.053.
DOI: 10.1016/j.microrel.2011.06.053
Google Scholar
[17]
X. Perpiñà, J.F. Serviere, J. Saiz, D. Barlini, M. Mermet-Guyennet, J. Millán, Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current, Microelectronics Reliability. 46 (2006) 1834–1839. https://doi.org/10.1016/j.microrel.2006.07.078.
DOI: 10.1016/j.microrel.2006.07.078
Google Scholar
[18]
J.L. Christian Herold, Jörg Franke, Riteshkumar Bhojani, Andre Schleicher, Methods for virtual junction temperature measurement respecting internal semiconductor processes, 2015 IEEE 27th Int. Symp. Power Semicond. Devices IC's. (n.d.). https://doi.org/10.1109/ ISPSD.2015.7123455.
DOI: 10.1109/ispsd.2015.7123455
Google Scholar
[19]
D.L. Blackburn, A review of thermal characterization of power transistors, Semicond. Therm. Temp. Meas. Symp. 1988. SEMI-THERM IV., Fourth Annu. IEEE. (1988) 1–7. https://doi.org/10.1109/SEMTHE.1988.10589.
Google Scholar
[20]
A. Rashed, F. Forest, J.-. Huselstein, T. Martiré, and P. Enrici, On-Line [ TJ, Vce ] Monitoring of IGBTs Stressed by Fast Power Cycling Tests, Power Electron. Appl. (EPE), 2013 15th Eur. Conf. (2013). https://doi.org/10.1109/EPE.2013.6631965.
DOI: 10.1109/epe.2013.6631965
Google Scholar
[21]
D. Schweitzer, H. Pape, L. Chen, R. Kutscherauer, M. Walder, Transient Dual Interface Measurement – A New JEDEC Standard for the Measurement of the Junction-to-Case Thermal Resistance, IEEE. (2011). https://doi.org/10.1109/STHERM.2011.5767204.
DOI: 10.1109/stherm.2011.5767204
Google Scholar
[22]
U.M. Choi, F. Blaabjerg, F. Iannuzzo, S. Jørgensen, Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation, Microelectron. Reliab. (2015) 6–10. https://doi.org/https://doi.org/10.1016/j.microrel.2015.06.146.
DOI: 10.1016/j.microrel.2015.06.146
Google Scholar
[23]
A. Koenig, T. Plum, P. Fidler, R.W. De Doncker, On-line Junction Temperature Measurement of CoolMOS Devices, IEEE 2007 7th Int. Conf. Power Electron. Drive Syst. (2007) 90–95. https://doi.org/10.1109/PEDS.2007.4487683.
DOI: 10.1109/peds.2007.4487683
Google Scholar
[24]
Y. Kim, S. Sul, On-Line Estimation of IGBT Junction Temperature Using On-State Voltage Drop, Conf. Rec. 1998 IEEE Ind. Appl. Conf. Thirty-Third IAS Annu. Meet. (Cat. No.98CH36242). (1998) 853–859. https://doi.org/10.1109/IAS.1998.730245.
DOI: 10.1109/ias.1998.730245
Google Scholar
[25]
X. Du, J. Zhang, S. Zheng, H.M. Tai, Thermal Network Parameter Estimation Using Cooling Curve of IGBT Module, IEEE Trans. Power Electron. PP (2018) 1. https://doi.org/10.1109/TPEL.2018.2879845.
DOI: 10.1109/tpel.2018.2879845
Google Scholar
[26]
LEM, LA 55-p, (2018) 3. https://www.lem.com/sites/default/files/products_datasheets/la_55-p_e.pdf.
Google Scholar
[27]
X. Du, T. Li, J. Zhang, H.M. Tai, P. Sun, L. Zhou, Thermal network parameter identification of IGBT module based on the cooling curve of junction temperature, Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC. 2016-May (2016) 2992–2997. https://doi.org/10.1109/APEC.2016.7468289.
DOI: 10.1109/apec.2016.7468289
Google Scholar
[28]
IEC Standard 60747-15 Semiconductor Devices, – Discrete Devices, Part 15: Isolated power semiconductor devices, (n.d.).
DOI: 10.3403/30162214
Google Scholar
[29]
N. Bv, RC Thermal Models, 2021. https://www.nexperia.com/.
Google Scholar
[30]
JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, n.d. https://doi.org/https://www.jedec.org/standards-documents/docs/jesd51-14-0.
Google Scholar
[31]
K.I. Pandya, W. Mcdaniel, A Simplified Method of Generating Thermal Models for Power MOSFETs, Eighteenth Annu. IEEE Semicond. Therm. Meas. Manag. Symp. Proc. 2002. (n.d.) 83–87. https://doi.org/10.1109/STHERM.2002.991350.
DOI: 10.1109/stherm.2002.991350
Google Scholar
[32]
G. Coquery, R. Lallemand, Failure criteria for long term Accelerated Power Cycling Test linked to electrical turn off SOA on IGBT module. A 4000 hours test on 1200A-3300V module with A1SiC base plate., Microelectron. Reliab. 40 (2000) 1665–1670. https://doi.org/ https://doi.org/10.1016/S0026-2714(00)00191-8.
DOI: 10.1016/s0026-2714(00)00191-8
Google Scholar