Design and Development of a Measurement System Dedicated to Estimate the Junction Temperature of Insulated Gate Bipolar Transistor Modules

Article Preview

Abstract:

The damage state estimation of an Insulated Gate Bipolar Transistor (IGBT) power module requires the measurement of the junction temperature (Tj) of the active region. However, the accurate measurement of the temperature Tj is not simple to achieve and several methods have been developed to improve the accuracy of Tj measurements. Some of the well-known methods include the use of thermo-sensitive electrical parameters (TSEP). Although the TSEP methods do not provide access to the thermal mapping of the IGBT surface, they have the advantage of not affecting the physical integrity of the module. This paper aims to present a reliable programmable measurement system dedicated to estimating with great accuracy the thermal performance of the IGBT power module on the microsecond scale using the TSEP method. The advantage of this system is to provide full control of the injection of the power current and allows quick measurements of the cooling curve just after the injection of the heating power in the chip. The junction temperature calculated from the TSEP was found to be equal to 97.5 °C, which was confirmed by using the thermal camera. The accuracy of the proposed technique was found to be less than 2%. A comparison with the thermal Resistor-Capacitor (RC) network model is also carried out in this work. Experimental results demonstrate that the designed system is high efficiency and can, therefore, be used by scientific researchers and industrial engineers for predictive maintenance to monitor the performance state of IGBT power modules, which will reduce the probability of its failure or degradation.

You might also be interested in these eBooks

Info:

Pages:

89-106

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Iwamuro, S. Member, T. Laska, IGBT History, State-of-the-Art, and Future Prospects, IEEE Trans. Electron Devices. (2017) 1–12. https://doi.org/10.1109/TED.2017.2654599.

DOI: 10.1109/ted.2017.2654599

Google Scholar

[2] W. Huai, M. Liserre, F. Blaabjerg, P. De Place Rimmen, J.B. Jacobsen, T. Kvisgaard, J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics, IEEE J. Emerg. Sel. Top. Power Electron. 2 (2014) 97–114. https://doi.org/10.1109/ JESTPE.2013.2290282.

DOI: 10.1109/jestpe.2013.2290282

Google Scholar

[3] X.G. C.Zhang, J.Shen, X.Xiao, Q.Deng, H.Wang, A New Design Method of IGBT Module with Embedded Vapor Chamber for Optimal Heat Radiation, IEEE 1st Int. Power Electron. Appl. Symp. (2021). https://doi.org/10.1109/PEAS53589.2021.9628676.

DOI: 10.1109/peas53589.2021.9628676

Google Scholar

[4] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, P. Tavner, An industry-based survey of reliability in power electronic converters, IEEE Trans. Ind. Appl. 47 (2011) 1441–1451. https://doi.org/10.1109/TIA.2011.2124436.

DOI: 10.1109/tia.2011.2124436

Google Scholar

[5] A. Abuelnaga, M. Narimani, A.S. Bahman, A review on IGBT module failure modes and lifetime testing, IEEE Access. 9 (2021) 9643–9663. https://doi.org/10.1109/ACCESS. 2021.3049738.

DOI: 10.1109/access.2021.3049738

Google Scholar

[6] L. Dupont, Y. Avenas, P.E. Vidal, Évaluation De La Température Des Composants Actifs De Puissance, 33 (2017).

DOI: 10.51257/a-v1-d3114

Google Scholar

[7] D.L. Blackburn, Temperature measurements of semiconductor devices - a review, Twentieth Annual IEEE Semiconductor Thermal Measurement, and Management Symposium (IEEE Cat. No.04CH37545). (2004) 70–80. https://doi.org/10.1109/STHERM.2004.1291304.

DOI: 10.1109/stherm.2004.1291285

Google Scholar

[8] R. Schmidt, U. Scheuermann, Using the chip as a temperature sensor - The influence of steep lateral temperature gradients on the Vce(T)-measurement, 2009 13th Eur. Conf. Power Electron. Appl. EPE '09. (2009). https://doi.org/10.1080/09398368.2011.11463790.

DOI: 10.1080/09398368.2011.11463790

Google Scholar

[9] Y. Avenas, L. Dupont, Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions – Comparison with infrared measurements, Microelectron. Reliab. 52 (2012) 2617–2626. https://doi.org/10.1016/j.microrel.2012.03.032.

DOI: 10.1016/j.microrel.2012.03.032

Google Scholar

[10] B. Thollin, L. Dupont, Z. Khatir, Y. Avenas, J.C. Crebier, P.O. Jeannin, Partial thermal impedance measurement for die interconnection characterization by a microsecond pulsed heating curve technique,, 2013 15th Eur. Conf. Power Electron. Appl. EPE 2013. (2013). https://doi.org/10.1109/EPE.2013.6634411.

DOI: 10.1109/epe.2013.6634411

Google Scholar

[11] Z. Jakopovic, Z. Bencic, F. Kolonic, Important properties of transient thermal impedance for MOS-gated power semiconductors, IEEE Int. Symp. Ind. Electron. 2 (1999) 574–578. https://doi.org/10.1109/isie.1999.798675.

DOI: 10.1109/isie.1999.798675

Google Scholar

[12] A. Wintrich, N. Ulrich, T. Werner, T. Reimann, Application Manual Power Semiconductors, 2015. https://www.semikron.com/service-support/application-manual.html.

Google Scholar

[13] U.M. Choi, F. Blaabjerg, S. Jørgensen, Power Cycling Test Methods for Reliability Assessment of Power Device Modules in Respect to Temperature Stress, IEEE Trans. Power Electron. 33 (2018) 2531–2551. https://doi.org/10.1109/TPEL.2017.2690500.

DOI: 10.1109/tpel.2017.2690500

Google Scholar

[14] E. Deng, Z. Zhao, Q. Xin, J. Zhang, Y. Huang, Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs, Microelectron. Reliab. 78 (2017) 25–37. https://doi.org/10.1016/j.microrel.2017.07.095.

DOI: 10.1016/j.microrel.2017.07.095

Google Scholar

[15] C. Wang, Y. He, Y. Jiang, L. Li, An anti-interference online monitoring method for IGBT bond wire aging, Electron. 10 (2021). https://doi.org/10.3390/electronics10121449.

DOI: 10.3390/electronics10121449

Google Scholar

[16] C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, P. Rodriguez, An overview of the reliability prediction related aspects of high power IGBTs in wind power applications, Microelectronics Reliability, Elsevier Ltd, 2011: p.1903–1907. https://doi.org/10.1016/j.microrel.2011.06.053.

DOI: 10.1016/j.microrel.2011.06.053

Google Scholar

[17] X. Perpiñà, J.F. Serviere, J. Saiz, D. Barlini, M. Mermet-Guyennet, J. Millán, Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current, Microelectronics Reliability. 46 (2006) 1834–1839. https://doi.org/10.1016/j.microrel.2006.07.078.

DOI: 10.1016/j.microrel.2006.07.078

Google Scholar

[18] J.L. Christian Herold, Jörg Franke, Riteshkumar Bhojani, Andre Schleicher, Methods for virtual junction temperature measurement respecting internal semiconductor processes, 2015 IEEE 27th Int. Symp. Power Semicond. Devices IC's. (n.d.). https://doi.org/10.1109/ ISPSD.2015.7123455.

DOI: 10.1109/ispsd.2015.7123455

Google Scholar

[19] D.L. Blackburn, A review of thermal characterization of power transistors, Semicond. Therm. Temp. Meas. Symp. 1988. SEMI-THERM IV., Fourth Annu. IEEE. (1988) 1–7. https://doi.org/10.1109/SEMTHE.1988.10589.

Google Scholar

[20] A. Rashed, F. Forest, J.-. Huselstein, T. Martiré, and P. Enrici, On-Line [ TJ, Vce ] Monitoring of IGBTs Stressed by Fast Power Cycling Tests, Power Electron. Appl. (EPE), 2013 15th Eur. Conf. (2013). https://doi.org/10.1109/EPE.2013.6631965.

DOI: 10.1109/epe.2013.6631965

Google Scholar

[21] D. Schweitzer, H. Pape, L. Chen, R. Kutscherauer, M. Walder, Transient Dual Interface Measurement – A New JEDEC Standard for the Measurement of the Junction-to-Case Thermal Resistance, IEEE. (2011). https://doi.org/10.1109/STHERM.2011.5767204.

DOI: 10.1109/stherm.2011.5767204

Google Scholar

[22] U.M. Choi, F. Blaabjerg, F. Iannuzzo, S. Jørgensen, Junction temperature estimation method for a 600 V, 30A IGBT module during converter operation, Microelectron. Reliab. (2015) 6–10. https://doi.org/https://doi.org/10.1016/j.microrel.2015.06.146.

DOI: 10.1016/j.microrel.2015.06.146

Google Scholar

[23] A. Koenig, T. Plum, P. Fidler, R.W. De Doncker, On-line Junction Temperature Measurement of CoolMOS Devices, IEEE 2007 7th Int. Conf. Power Electron. Drive Syst. (2007) 90–95. https://doi.org/10.1109/PEDS.2007.4487683.

DOI: 10.1109/peds.2007.4487683

Google Scholar

[24] Y. Kim, S. Sul, On-Line Estimation of IGBT Junction Temperature Using On-State Voltage Drop, Conf. Rec. 1998 IEEE Ind. Appl. Conf. Thirty-Third IAS Annu. Meet. (Cat. No.98CH36242). (1998) 853–859. https://doi.org/10.1109/IAS.1998.730245.

DOI: 10.1109/ias.1998.730245

Google Scholar

[25] X. Du, J. Zhang, S. Zheng, H.M. Tai, Thermal Network Parameter Estimation Using Cooling Curve of IGBT Module, IEEE Trans. Power Electron. PP (2018) 1. https://doi.org/10.1109/TPEL.2018.2879845.

DOI: 10.1109/tpel.2018.2879845

Google Scholar

[26] LEM, LA 55-p, (2018) 3. https://www.lem.com/sites/default/files/products_datasheets/la_55-p_e.pdf.

Google Scholar

[27] X. Du, T. Li, J. Zhang, H.M. Tai, P. Sun, L. Zhou, Thermal network parameter identification of IGBT module based on the cooling curve of junction temperature, Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC. 2016-May (2016) 2992–2997. https://doi.org/10.1109/APEC.2016.7468289.

DOI: 10.1109/apec.2016.7468289

Google Scholar

[28] IEC Standard 60747-15 Semiconductor Devices, – Discrete Devices, Part 15: Isolated power semiconductor devices, (n.d.).

DOI: 10.3403/30162214

Google Scholar

[29] N. Bv, RC Thermal Models, 2021. https://www.nexperia.com/.

Google Scholar

[30] JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, n.d. https://doi.org/https://www.jedec.org/standards-documents/docs/jesd51-14-0.

Google Scholar

[31] K.I. Pandya, W. Mcdaniel, A Simplified Method of Generating Thermal Models for Power MOSFETs, Eighteenth Annu. IEEE Semicond. Therm. Meas. Manag. Symp. Proc. 2002. (n.d.) 83–87. https://doi.org/10.1109/STHERM.2002.991350.

DOI: 10.1109/stherm.2002.991350

Google Scholar

[32] G. Coquery, R. Lallemand, Failure criteria for long term Accelerated Power Cycling Test linked to electrical turn off SOA on IGBT module. A 4000 hours test on 1200A-3300V module with A1SiC base plate., Microelectron. Reliab. 40 (2000) 1665–1670. https://doi.org/ https://doi.org/10.1016/S0026-2714(00)00191-8.

DOI: 10.1016/s0026-2714(00)00191-8

Google Scholar