[1]
H. Zhao, Climate Change and Sustainable Development, Econ. Polit. China's Energy Secur. Transit. (2019) 277–305. https://doi.org/10.1016/b978-0-12-815152-5.00012-9.
Google Scholar
[2]
N. Bailek, K. Bouchouicha, M.A. Hassan, A. Slimani, B. Jamil, Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria, Renew. Energy. 156 (2020) 57–67. https://doi.org/10.1016/j.renene.2020.04.073.
DOI: 10.1016/j.renene.2020.04.073
Google Scholar
[3]
S. Maithel, Energy efficiency and renewable energy: Summary of presentations and discussions, China Rep. 44 (2008) 53–55. https://doi.org/10.1177/000944550704400107.
DOI: 10.1177/000944550704400107
Google Scholar
[4]
K. Lovegrove, J. Pye, Fundamental principles of concentrating solar power (CSP) systems, Conc. Sol. Power Technol. (2012) 16–67. https://doi.org/10.1533/9780857096173.1.16.
DOI: 10.1533/9780857096173.1.16
Google Scholar
[5]
R. Siva Subramanian, G. Kumaresan, R. Palanivel, P. Nishanth kalathil, B. Nirmal, Comparative performance analysis of parabolic trough solar collector by varying absorber surface, Mater. Today Proc. 45 (2021) 1217–1221. https://doi.org/10.1016/j.matpr. 2020.04.248.
DOI: 10.1016/j.matpr.2020.04.248
Google Scholar
[6]
Y.L. He, J. Xiao, Z.D. Cheng, Y.B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector, Renew. Energy. 36 (2011) 976–985. https://doi.org/10.1016/j.renene.2010.07.017.
DOI: 10.1016/j.renene.2010.07.017
Google Scholar
[7]
R. Forristall, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, Golden, Colorado, 2003. https://doi.org/NREL/TP-550-34169.
DOI: 10.2172/15004820
Google Scholar
[8]
R. Buehler, S. Yang, J.C. Ordonez, Heat transfer fluids for parabolic trough solar collectors - A comparative study, 2016 IEEE Conf. Technol. Sustain. SusTech 2016. (2017) 68–75. https://doi.org/10.1109/SusTech.2016.7897145.
DOI: 10.1109/sustech.2016.7897145
Google Scholar
[9]
E. Bellos, C. Tzivanidis, K.A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors, Appl. Therm. Eng. 114 (2017) 374–386. https://doi.org/10.1016/j.applthermaleng.2016.11.201.
DOI: 10.1016/j.applthermaleng.2016.11.201
Google Scholar
[10]
N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser, Assessment and Evaluation of the Thermal Performance of VariousWorking Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions, Energies. 13 (2020). https://doi.org/10.3390/en13153776.
DOI: 10.3390/en13153776
Google Scholar
[11]
S.E. Ghasemi, A.A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study, J. Mol. Liq. 222 (2016) 159–166. https://doi.org/10.1016/j.molliq.2016.06.091.
DOI: 10.1016/j.molliq.2016.06.091
Google Scholar
[12]
A. Mwesigye, Z. Huan, J.P. Meyer, Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil-Al2O3 nanofluid, Appl. Energy. 156 (2015) 398–412. https://doi.org/10.1016/j.apenergy.2015.07.035.
DOI: 10.1016/j.apenergy.2015.07.035
Google Scholar
[13]
E. Bellos, C. Tzivanidis, D. Tsimpoukis, Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids, Energy Convers. Manag. 156 (2018) 388–402. https://doi.org/10.1016/j.enconman.2017.11.051.
DOI: 10.1016/j.enconman.2017.11.051
Google Scholar
[14]
M. Abubakr, H. Amein, B.M. Akoush, M.M. El-Bakry, M.A. Hassan, An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids, Renew. Energy. (2020).
DOI: 10.1016/j.renene.2020.04.160
Google Scholar
[15]
N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser, T. Mekhail, Thermal performance evaluation of various nanofluids with non-uniform heating for parabolic trough collectors, Case Stud. Therm. Eng. 22 (2020) 100769. https://doi.org/10.1016/j.csite.2020.100769.
DOI: 10.1016/j.csite.2020.100769
Google Scholar
[16]
J. Subramani, P.K. Nagarajan, O. Mahian, R. Sathyamurthy, Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime, Renew. Energy. 119 (2018) 19–31. https://doi.org/10.1016/j.renene.2017.11.079.
DOI: 10.1016/j.renene.2017.11.079
Google Scholar
[17]
A. Mwesigye, Z. Huan, Thermal and Thermodynamic Performance of a Parabolic Trough Receiver with Syltherm800-Al2O3 Nanofluid as the Heat Transfer Fluid, Energy Procedia. 75 (2015) 394–402. https://doi.org/10.1016/j.egypro.2015.07.402.
DOI: 10.1016/j.egypro.2015.07.402
Google Scholar
[18]
S. Sreekumar, A. Joseph, C.S. Sujith Kumar, S. Thomas, Investigation on influence of antimony tin oxide/silver nanofluid on direct absorption parabolic solar collector, J. Clean. Prod. 249 (2020) 119378. https://doi.org/10.1016/j.jclepro.2019.119378.
DOI: 10.1016/j.jclepro.2019.119378
Google Scholar
[19]
A.K. Tiwar, V. Kumar, Z. Said, H.K. Paliwal, A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook, J. Clean. Prod. 292 (2021) 126031. https://doi.org/10.1016/j.jclepro.2021.126031.
DOI: 10.1016/j.jclepro.2021.126031
Google Scholar
[20]
R.A. Rasih, N.A.C. Sidik, S. Samion, Recent progress on concentrating direct absorption solar collector using nanofluids: A review, J. Therm. Anal. Calorim. 137 (2019) 903–922. https://doi.org/10.1007/s10973-018-7964-6.
DOI: 10.1007/s10973-018-7964-6
Google Scholar
[21]
E.W. Bitam, Y. Demagh, A.A. Hachicha, H. Benmoussa, Y. Kabar, Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology, Appl. Energy. 218 (2018) 494–510. https://doi.org/10.1016/j.apenergy.2018.02.177.
DOI: 10.1016/j.apenergy.2018.02.177
Google Scholar
[22]
K. Ravi Kumar, K.S. Reddy, Thermal analysis of solar parabolic trough with porous disc receiver, Appl. Energy. 86 (2009) 1804–1812. https://doi.org/10.1016/j.apenergy. 2008.11.007.
DOI: 10.1016/j.apenergy.2008.11.007
Google Scholar
[23]
A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts, Int. J. Therm. Sci. 99 (2016) 238–257. https://doi.org/10.1016/j.ijthermalsci.2015.08.015.
DOI: 10.1016/j.ijthermalsci.2015.08.015
Google Scholar
[24]
K. Arshad Ahmed, E. Natarajan, Thermal performance enhancement in a parabolic trough receiver tube with internal toroidal rings: A numerical investigation, Appl. Therm. Eng. 162 (2019) 114224. https://doi.org/10.1016/j.applthermaleng.2019.114224.
DOI: 10.1016/j.applthermaleng.2019.114224
Google Scholar
[25]
E. Bellos, C. Tzivanidis, D. Tsimpoukis, Thermal enhancement of parabolic trough collector with internally finned absorbers, Sol. Energy. 157 (2017) 514–531. https://doi.org/10.1016/j.solener.2017.08.067.
DOI: 10.1016/j.solener.2017.08.067
Google Scholar
[26]
X. Zhu, L. Zhu, J. Zhao, Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver, Energy. 141 (2017) 1146–1155. https://doi.org/10.1016/j.energy.2017.10.010.
DOI: 10.1016/j.energy.2017.10.010
Google Scholar
[27]
E. Bellos, I. Daniil, C. Tzivanidis, Multiple cylindrical inserts for parabolic trough solar collector, Appl. Therm. Eng. 143 (2018) 80–89. https://doi.org/10.1016/j.applthermaleng. 2018.07.086.
DOI: 10.1016/j.applthermaleng.2018.07.086
Google Scholar
[28]
İ.H. Yılmaz, A. Mwesigye, T.T. Göksu, Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts, Sustain. Energy Technol. Assessments. 39 (2020). https://doi.org/10.1016/j.seta.2020.100696.
DOI: 10.1016/j.seta.2020.100696
Google Scholar
[29]
E. Bellos, C. Tzivanidis, K.A. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube, Renew. Energy. 94 (2016) 213–222. https://doi.org/10.1016/j.renene.2016.03.062.
DOI: 10.1016/j.renene.2016.03.062
Google Scholar
[30]
K.S. Jafar, B. Sivaraman, Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts, Int. Energy J. 14 (2014) 189–198.
Google Scholar
[31]
GSR_REN21, Renewables 2020 Global Status Report, Paris, (2020).
Google Scholar
[32]
M.M. El-Bakry, M.A. Kassem, M.A. Hassan, Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields, Renew. Energy. 165 (2021) 52–66. https://doi.org/10.1016/j.renene.2020.11.003.
DOI: 10.1016/j.renene.2020.11.003
Google Scholar
[33]
E. Dudley, J. Kolb, A. Mahoney, T. Mancini, S. M, D. Kearney, Test results: SEGS LS-2 solar collector. Sandia National Laboratory. Report: SAND94- 1884, New Mexico, US, (1994).
DOI: 10.2172/70756
Google Scholar
[34]
E. Bellos, C. Tzivanidis, D. Tsimpoukis, Multi-criteria evaluation of parabolic trough collector with internally finned absorbers, Appl. Energy. 205 (2017) 540–561. https://doi.org/10.1016/j.apenergy.2017.07.141.
DOI: 10.1016/j.apenergy.2017.07.141
Google Scholar
[35]
B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf. 11 (1998) 151–170. https://doi.org/10.1080/08916159808946559.
DOI: 10.1080/08916159808946559
Google Scholar
[36]
Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5.
DOI: 10.1016/s0017-9310(99)00369-5
Google Scholar
[37]
B. Vaferi, F. Samimi, E. Pakgohar, D. Mowla, Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes, Powder Technol. 267 (2014) 1–10. https://doi.org/10.1016/j.powtec.2014.06.062.
DOI: 10.1016/j.powtec.2014.06.062
Google Scholar
[38]
Z. Hajabdollahi, H. Hajabdollahi, P.F. Fu, The effect of using different types of nanoparticles on optimal design of fin and tube heat exchanger, Asia-Pacific J. Chem. Eng. 12 (2017) 905–918. https://doi.org/10.1002/apj.2128.
DOI: 10.1002/apj.2128
Google Scholar
[39]
Dow Chemical. Syltherm 800 heat transfer fluid: Product technical data, (2018).
Google Scholar
[40]
A. Kaood, M. Abubakr, O. Al-Oran, M.A. Hassan, Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators, Renew. Energy. 177 (2021) 1045–1062. https://doi.org/10.1016/j.renene.2021.06.049.
DOI: 10.1016/j.renene.2021.06.049
Google Scholar
[41]
K. Irshad, N. Islam, M.H. Zahir, A.A. Pasha, A.F. Abdelgawad, Thermal performance investigation of Therminol55/MWCNT+CuO nanofluid flow in a heat exchanger from an exergy and entropy approach, Case Stud. Therm. Eng. 34 (2022) 102010. https://doi.org/10.1016/j.csite.2022.102010.
DOI: 10.1016/j.csite.2022.102010
Google Scholar
[42]
I. Wole-osho, E.C. Okonkwo, S. Abbasoglu, D. Kavaz, Nanofluids in Solar Thermal Collectors: Review and Limitations, Springer US, 2020. https://doi.org/10.1007/s10765-020-02737-1.
DOI: 10.1007/s10765-020-02737-1
Google Scholar
[43]
H. Amein, M.A. Kassem, S. Ali, M.A. Hassan, Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances, Renew. Energy. 171 (2021) 344–359. https://doi.org/10.1016/j.renene.2021.02.111.
DOI: 10.1016/j.renene.2021.02.111
Google Scholar
[44]
S.M. Jeter, Analytical determination of the optical performance of practical parabolic trough collectors from design data, Sol. Energy. 39 (1987) 11–21. https://doi.org/10.1016/S0038-092X(87)80047-6.
DOI: 10.1016/s0038-092x(87)80047-6
Google Scholar
[45]
S.M. Abd Elfadeel, H. Amein, M.M. El-Bakry, M.A. Hassan, Assessment of a multiple port storage tank in a CPC-driven solar process heat system, Renew. Energy. 180 (2021) 860–873. https://doi.org/10.1016/j.renene.2021.08.126.
DOI: 10.1016/j.renene.2021.08.126
Google Scholar
[46]
M.I. Roldán, L. Valenzuela, E. Zarza, Thermal analysis of solar receiver pipes with superheated steam, Appl. Energy. 103 (2013) 73–84. https://doi.org/10.1016/j.apenergy. 2012.10.021.
DOI: 10.1016/j.apenergy.2012.10.021
Google Scholar
[47]
A. Kaood, M.A. Hassan, Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes, Chem. Eng. Process. - Process Intensif. 154 (2020) 108043. https://doi.org/10.1016/j.cep.2020.108043.
DOI: 10.1016/j.cep.2020.108043
Google Scholar
[48]
ANSYS, ANSYS - Turbulence Modelling and the Law of the Wall: Tutorial, ANSYS User Man. (2014) 1–48.
Google Scholar
[49]
M.A. Hassan, M.A. Kassem, A. Kaood, Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert, J. Therm. Anal. Calorim. 147 (2022) 6847–6868. https://doi.org/10.1007/s10973-021-10998-7.
DOI: 10.1007/s10973-021-10998-7
Google Scholar
[50]
H.W. Chiam, W.H. Azmi, N.M. Adam, M.K.A.M. Ariffin, Numerical study of nanofluid heat transfer for different tube geometries – A comprehensive review on performance, Int. Commun. Heat Mass Transf. 86 (2017) 60–70. https://doi.org/10.1016/j.icheatmasstransfer. 2017.05.019.
DOI: 10.1016/j.icheatmasstransfer.2017.05.019
Google Scholar
[51]
Ö. Aǧra, H. Demir, S. Ataylmaz Özgür, F. Kantaş, A.S. Dalklç, Numerical investigation of heat transfer and pressure drop in enhanced tubes, Int. Commun. Heat Mass Transf. 38 (2011) 1384–1391. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.013.
DOI: 10.1016/j.icheatmasstransfer.2011.07.013
Google Scholar
[52]
A.H. Abdelrazek, S.N. Kazi, O.A. Alawi, N. Yusoff, C.S. Oon, H.M. Ali, Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids, J. Therm. Anal. Calorim. 139 (2020) 1637–1653. https://doi.org/10.1007/s10973-019-08562-5.
DOI: 10.1007/s10973-019-08562-5
Google Scholar
[53]
M. Sharma, R. Jilte, A review on passive methods for thermal performance enhancement in parabolic trough solar collectors, Int. J. Energy Res. 45 (2021) 4932–4966. https://doi.org/10.1002/er.6212.
DOI: 10.1002/er.6212
Google Scholar
[54]
S. Lukachev, V. Biryuk, A. Gorshkalev, Using Ansys Fluent to Study Gas-Dynamic and Thermal Processes in Small-Sized Two-Stroke Engine, Sci. Educ. Bauman MSTU. 14 (2014) 416–425. https://doi.org/10.7463/1214.0746454.
DOI: 10.7463/1214.0746454
Google Scholar
[55]
H. Amein, B.M. Akoush, M.M. El-Bakry, M. Abubakr, M.A. Hassan, Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism, Renew. Energy. 181 (2022) 250–266. https://doi.org/10.1016/j.renene.2021.09.044.
DOI: 10.1016/j.renene.2021.09.044
Google Scholar
[56]
R. Ekiciler, K. Arslan, O. Turgut, B. Kurşun, Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver, J. Therm. Anal. Calorim. 143 (2021) 1637–1654. https://doi.org/10.1007/s10973-020-09717-5.
DOI: 10.1007/s10973-020-09717-5
Google Scholar
[57]
ANSYS FLUENT 13 User's Guide, Ansys Fluent Theory Guide, Canonsburg, PA, USA, (2013).
Google Scholar
[58]
GNIELINSKI, V., New Equations for Heat and Mass Transfer in Turbulent Flow Through Pipes and Ducts., Forsch. Im. Ingenieurwessen. 41 (1975) (1975).
Google Scholar
[59]
M.A. Hassan, N. Bailek, K. Bouchouicha, S.C. Nwokolo, Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks, Renew. Energy. 171 (2021) 191–209. https://doi.org/10.1016/j.renene.2021.02.103.
DOI: 10.1016/j.renene.2021.02.103
Google Scholar
[60]
N. Bailek, K. Bouchouicha, Z. Al-Mostafa, M. El-Shimy, N. Aoun, A. Slimani, S. Al-Shehri, A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South, Renew. Energy. 117 (2018) 530–537. https://doi.org/10.1016/j.renene.2017.10. 081.
DOI: 10.1016/j.renene.2017.10.081
Google Scholar
[61]
Y.A. CENGEL, From Earned Value to Value Realisation, PM World J. 4 (2015) 1–9.
Google Scholar
[62]
M.A. Khan, T.O. Kleine, Histochemical and biochemical investigations of adenosine triphosphatase in vertebrate mixed muscles., Acta Histochem. Suppl. Suppl 18 (1977) 245–258.
Google Scholar
[63]
B. Zou, Y. Jiang, Y. Yao, H. Yang, Thermal performance improvement using unilateral spiral ribbed absorber tube for parabolic trough solar collector, Sol. Energy. 183 (2019) 371–385. https://doi.org/10.1016/j.solener.2019.03.048.
DOI: 10.1016/j.solener.2019.03.048
Google Scholar
[64]
E. Bellos, C. Tzivanidis, Z. Said, A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors, Sustain. Energy Technol. Assessments. 39 (2020) 100714. https://doi.org/10.1016/j.seta.2020.100714.
DOI: 10.1016/j.seta.2020.100714
Google Scholar
[65]
M. Wirz, J. Petit, A. Haselbacher, A. Steinfeld, Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators, Sol. Energy. 107 (2014) 398–414. https://doi.org/10.1016/j.solener.2014.05.002.
DOI: 10.1016/j.solener.2014.05.002
Google Scholar
[66]
N. Abed, I. Afgan, An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors, Int. J. Energy Res. 44 (2020) 5117–5164. https://doi.org/10.1002/er.5271.
DOI: 10.1002/er.5271
Google Scholar
[67]
E. Bellos, C. Tzivanidis, I. Daniil, Energetic and exergetic investigation of a parabolic trough collector with internal fins operating with carbon dioxide, Int. J. Energy Environ. Eng. 8 (2017) 109–122. https://doi.org/10.1007/s40095-017-0229-5.
DOI: 10.1007/s40095-017-0229-5
Google Scholar
[68]
R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver, Appl. Therm. Eng. 67 (2014) 579–586. https://doi.org/10.1016/j.applthermaleng.2014.03.053.
DOI: 10.1016/j.applthermaleng.2014.03.053
Google Scholar
[69]
E. Bellos, C. Tzivanidis, A detailed exergetic analysis of parabolic trough collectors, Energy Convers. Manag. 149 (2017) 275–292. https://doi.org/10.1016/j.enconman.2017.07.035.
DOI: 10.1016/j.enconman.2017.07.035
Google Scholar