Combined Thermal Performance Enhancement of Parabolic Trough Collectors Using Alumina Nanoparticles and Internal Fins

Article Preview

Abstract:

Parabolic trough collectors are the currently dominant technology for concentrated solar power systems, employed to produce thermal energy at low to medium temperatures (up to 400°C). Extensive research has been carried out to enhance the thermal efficiency and reduce the power production costs of these concentrators. However, there is a lack of studies on combined passive performance enhancement using alternative fluids and absorber designs. In this study, the thermal performance of a full-sized parabolic trough collector is analyzed with the presence of internal longitudinal fins in combination with the use of oil-based nanofluid (Al2O3-Syltherm 800) of different volume fractions. The governing equations are numerically solved using ANSYS FLUENT 17.1 software and the Monte-Carlo ray-tracing (MCRT) model was used to apply the non-uniform heat flux profile over the external surface of the solar receiver. The results show that both techniques enhance thermal energy utilization and reduce radiative and convective thermal losses, resulting in higher thermal efficiency, but also larger pressure losses. The thermal performance is enhanced by 0.1-1.16 % with nanofluid, up to 6.8 % with internal fins, and by up to 7.25 % when both techniques are adopted. These enhancements are attributed to the reduced mean circumferential temperature of the absorber tube.

You might also be interested in these eBooks

Info:

Pages:

107-132

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zhao, Climate Change and Sustainable Development, Econ. Polit. China's Energy Secur. Transit. (2019) 277–305. https://doi.org/10.1016/b978-0-12-815152-5.00012-9.

Google Scholar

[2] N. Bailek, K. Bouchouicha, M.A. Hassan, A. Slimani, B. Jamil, Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria, Renew. Energy. 156 (2020) 57–67. https://doi.org/10.1016/j.renene.2020.04.073.

DOI: 10.1016/j.renene.2020.04.073

Google Scholar

[3] S. Maithel, Energy efficiency and renewable energy: Summary of presentations and discussions, China Rep. 44 (2008) 53–55. https://doi.org/10.1177/000944550704400107.

DOI: 10.1177/000944550704400107

Google Scholar

[4] K. Lovegrove, J. Pye, Fundamental principles of concentrating solar power (CSP) systems, Conc. Sol. Power Technol. (2012) 16–67. https://doi.org/10.1533/9780857096173.1.16.

DOI: 10.1533/9780857096173.1.16

Google Scholar

[5] R. Siva Subramanian, G. Kumaresan, R. Palanivel, P. Nishanth kalathil, B. Nirmal, Comparative performance analysis of parabolic trough solar collector by varying absorber surface, Mater. Today Proc. 45 (2021) 1217–1221. https://doi.org/10.1016/j.matpr. 2020.04.248.

DOI: 10.1016/j.matpr.2020.04.248

Google Scholar

[6] Y.L. He, J. Xiao, Z.D. Cheng, Y.B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector, Renew. Energy. 36 (2011) 976–985. https://doi.org/10.1016/j.renene.2010.07.017.

DOI: 10.1016/j.renene.2010.07.017

Google Scholar

[7] R. Forristall, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, Golden, Colorado, 2003. https://doi.org/NREL/TP-550-34169.

DOI: 10.2172/15004820

Google Scholar

[8] R. Buehler, S. Yang, J.C. Ordonez, Heat transfer fluids for parabolic trough solar collectors - A comparative study, 2016 IEEE Conf. Technol. Sustain. SusTech 2016. (2017) 68–75. https://doi.org/10.1109/SusTech.2016.7897145.

DOI: 10.1109/sustech.2016.7897145

Google Scholar

[9] E. Bellos, C. Tzivanidis, K.A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors, Appl. Therm. Eng. 114 (2017) 374–386. https://doi.org/10.1016/j.applthermaleng.2016.11.201.

DOI: 10.1016/j.applthermaleng.2016.11.201

Google Scholar

[10] N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser, Assessment and Evaluation of the Thermal Performance of VariousWorking Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions, Energies. 13 (2020). https://doi.org/10.3390/en13153776.

DOI: 10.3390/en13153776

Google Scholar

[11] S.E. Ghasemi, A.A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study, J. Mol. Liq. 222 (2016) 159–166. https://doi.org/10.1016/j.molliq.2016.06.091.

DOI: 10.1016/j.molliq.2016.06.091

Google Scholar

[12] A. Mwesigye, Z. Huan, J.P. Meyer, Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil-Al2O3 nanofluid, Appl. Energy. 156 (2015) 398–412. https://doi.org/10.1016/j.apenergy.2015.07.035.

DOI: 10.1016/j.apenergy.2015.07.035

Google Scholar

[13] E. Bellos, C. Tzivanidis, D. Tsimpoukis, Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids, Energy Convers. Manag. 156 (2018) 388–402. https://doi.org/10.1016/j.enconman.2017.11.051.

DOI: 10.1016/j.enconman.2017.11.051

Google Scholar

[14] M. Abubakr, H. Amein, B.M. Akoush, M.M. El-Bakry, M.A. Hassan, An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids, Renew. Energy. (2020).

DOI: 10.1016/j.renene.2020.04.160

Google Scholar

[15] N. Abed, I. Afgan, A. Cioncolini, H. Iacovides, A. Nasser, T. Mekhail, Thermal performance evaluation of various nanofluids with non-uniform heating for parabolic trough collectors, Case Stud. Therm. Eng. 22 (2020) 100769. https://doi.org/10.1016/j.csite.2020.100769.

DOI: 10.1016/j.csite.2020.100769

Google Scholar

[16] J. Subramani, P.K. Nagarajan, O. Mahian, R. Sathyamurthy, Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime, Renew. Energy. 119 (2018) 19–31. https://doi.org/10.1016/j.renene.2017.11.079.

DOI: 10.1016/j.renene.2017.11.079

Google Scholar

[17] A. Mwesigye, Z. Huan, Thermal and Thermodynamic Performance of a Parabolic Trough Receiver with Syltherm800-Al2O3 Nanofluid as the Heat Transfer Fluid, Energy Procedia. 75 (2015) 394–402. https://doi.org/10.1016/j.egypro.2015.07.402.

DOI: 10.1016/j.egypro.2015.07.402

Google Scholar

[18] S. Sreekumar, A. Joseph, C.S. Sujith Kumar, S. Thomas, Investigation on influence of antimony tin oxide/silver nanofluid on direct absorption parabolic solar collector, J. Clean. Prod. 249 (2020) 119378. https://doi.org/10.1016/j.jclepro.2019.119378.

DOI: 10.1016/j.jclepro.2019.119378

Google Scholar

[19] A.K. Tiwar, V. Kumar, Z. Said, H.K. Paliwal, A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook, J. Clean. Prod. 292 (2021) 126031. https://doi.org/10.1016/j.jclepro.2021.126031.

DOI: 10.1016/j.jclepro.2021.126031

Google Scholar

[20] R.A. Rasih, N.A.C. Sidik, S. Samion, Recent progress on concentrating direct absorption solar collector using nanofluids: A review, J. Therm. Anal. Calorim. 137 (2019) 903–922. https://doi.org/10.1007/s10973-018-7964-6.

DOI: 10.1007/s10973-018-7964-6

Google Scholar

[21] E.W. Bitam, Y. Demagh, A.A. Hachicha, H. Benmoussa, Y. Kabar, Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology, Appl. Energy. 218 (2018) 494–510. https://doi.org/10.1016/j.apenergy.2018.02.177.

DOI: 10.1016/j.apenergy.2018.02.177

Google Scholar

[22] K. Ravi Kumar, K.S. Reddy, Thermal analysis of solar parabolic trough with porous disc receiver, Appl. Energy. 86 (2009) 1804–1812. https://doi.org/10.1016/j.apenergy. 2008.11.007.

DOI: 10.1016/j.apenergy.2008.11.007

Google Scholar

[23] A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts, Int. J. Therm. Sci. 99 (2016) 238–257. https://doi.org/10.1016/j.ijthermalsci.2015.08.015.

DOI: 10.1016/j.ijthermalsci.2015.08.015

Google Scholar

[24] K. Arshad Ahmed, E. Natarajan, Thermal performance enhancement in a parabolic trough receiver tube with internal toroidal rings: A numerical investigation, Appl. Therm. Eng. 162 (2019) 114224. https://doi.org/10.1016/j.applthermaleng.2019.114224.

DOI: 10.1016/j.applthermaleng.2019.114224

Google Scholar

[25] E. Bellos, C. Tzivanidis, D. Tsimpoukis, Thermal enhancement of parabolic trough collector with internally finned absorbers, Sol. Energy. 157 (2017) 514–531. https://doi.org/10.1016/j.solener.2017.08.067.

DOI: 10.1016/j.solener.2017.08.067

Google Scholar

[26] X. Zhu, L. Zhu, J. Zhao, Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver, Energy. 141 (2017) 1146–1155. https://doi.org/10.1016/j.energy.2017.10.010.

DOI: 10.1016/j.energy.2017.10.010

Google Scholar

[27] E. Bellos, I. Daniil, C. Tzivanidis, Multiple cylindrical inserts for parabolic trough solar collector, Appl. Therm. Eng. 143 (2018) 80–89. https://doi.org/10.1016/j.applthermaleng. 2018.07.086.

DOI: 10.1016/j.applthermaleng.2018.07.086

Google Scholar

[28] İ.H. Yılmaz, A. Mwesigye, T.T. Göksu, Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts, Sustain. Energy Technol. Assessments. 39 (2020). https://doi.org/10.1016/j.seta.2020.100696.

DOI: 10.1016/j.seta.2020.100696

Google Scholar

[29] E. Bellos, C. Tzivanidis, K.A. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube, Renew. Energy. 94 (2016) 213–222. https://doi.org/10.1016/j.renene.2016.03.062.

DOI: 10.1016/j.renene.2016.03.062

Google Scholar

[30] K.S. Jafar, B. Sivaraman, Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts, Int. Energy J. 14 (2014) 189–198.

Google Scholar

[31] GSR_REN21, Renewables 2020 Global Status Report, Paris, (2020).

Google Scholar

[32] M.M. El-Bakry, M.A. Kassem, M.A. Hassan, Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields, Renew. Energy. 165 (2021) 52–66. https://doi.org/10.1016/j.renene.2020.11.003.

DOI: 10.1016/j.renene.2020.11.003

Google Scholar

[33] E. Dudley, J. Kolb, A. Mahoney, T. Mancini, S. M, D. Kearney, Test results: SEGS LS-2 solar collector. Sandia National Laboratory. Report: SAND94- 1884, New Mexico, US, (1994).

DOI: 10.2172/70756

Google Scholar

[34] E. Bellos, C. Tzivanidis, D. Tsimpoukis, Multi-criteria evaluation of parabolic trough collector with internally finned absorbers, Appl. Energy. 205 (2017) 540–561. https://doi.org/10.1016/j.apenergy.2017.07.141.

DOI: 10.1016/j.apenergy.2017.07.141

Google Scholar

[35] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf. 11 (1998) 151–170. https://doi.org/10.1080/08916159808946559.

DOI: 10.1080/08916159808946559

Google Scholar

[36] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43 (2000) 3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5.

DOI: 10.1016/s0017-9310(99)00369-5

Google Scholar

[37] B. Vaferi, F. Samimi, E. Pakgohar, D. Mowla, Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes, Powder Technol. 267 (2014) 1–10. https://doi.org/10.1016/j.powtec.2014.06.062.

DOI: 10.1016/j.powtec.2014.06.062

Google Scholar

[38] Z. Hajabdollahi, H. Hajabdollahi, P.F. Fu, The effect of using different types of nanoparticles on optimal design of fin and tube heat exchanger, Asia-Pacific J. Chem. Eng. 12 (2017) 905–918. https://doi.org/10.1002/apj.2128.

DOI: 10.1002/apj.2128

Google Scholar

[39] Dow Chemical. Syltherm 800 heat transfer fluid: Product technical data, (2018).

Google Scholar

[40] A. Kaood, M. Abubakr, O. Al-Oran, M.A. Hassan, Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators, Renew. Energy. 177 (2021) 1045–1062. https://doi.org/10.1016/j.renene.2021.06.049.

DOI: 10.1016/j.renene.2021.06.049

Google Scholar

[41] K. Irshad, N. Islam, M.H. Zahir, A.A. Pasha, A.F. Abdelgawad, Thermal performance investigation of Therminol55/MWCNT+CuO nanofluid flow in a heat exchanger from an exergy and entropy approach, Case Stud. Therm. Eng. 34 (2022) 102010. https://doi.org/10.1016/j.csite.2022.102010.

DOI: 10.1016/j.csite.2022.102010

Google Scholar

[42] I. Wole-osho, E.C. Okonkwo, S. Abbasoglu, D. Kavaz, Nanofluids in Solar Thermal Collectors: Review and Limitations, Springer US, 2020. https://doi.org/10.1007/s10765-020-02737-1.

DOI: 10.1007/s10765-020-02737-1

Google Scholar

[43] H. Amein, M.A. Kassem, S. Ali, M.A. Hassan, Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances, Renew. Energy. 171 (2021) 344–359. https://doi.org/10.1016/j.renene.2021.02.111.

DOI: 10.1016/j.renene.2021.02.111

Google Scholar

[44] S.M. Jeter, Analytical determination of the optical performance of practical parabolic trough collectors from design data, Sol. Energy. 39 (1987) 11–21. https://doi.org/10.1016/S0038-092X(87)80047-6.

DOI: 10.1016/s0038-092x(87)80047-6

Google Scholar

[45] S.M. Abd Elfadeel, H. Amein, M.M. El-Bakry, M.A. Hassan, Assessment of a multiple port storage tank in a CPC-driven solar process heat system, Renew. Energy. 180 (2021) 860–873. https://doi.org/10.1016/j.renene.2021.08.126.

DOI: 10.1016/j.renene.2021.08.126

Google Scholar

[46] M.I. Roldán, L. Valenzuela, E. Zarza, Thermal analysis of solar receiver pipes with superheated steam, Appl. Energy. 103 (2013) 73–84. https://doi.org/10.1016/j.apenergy. 2012.10.021.

DOI: 10.1016/j.apenergy.2012.10.021

Google Scholar

[47] A. Kaood, M.A. Hassan, Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes, Chem. Eng. Process. - Process Intensif. 154 (2020) 108043. https://doi.org/10.1016/j.cep.2020.108043.

DOI: 10.1016/j.cep.2020.108043

Google Scholar

[48] ANSYS, ANSYS - Turbulence Modelling and the Law of the Wall: Tutorial, ANSYS User Man. (2014) 1–48.

Google Scholar

[49] M.A. Hassan, M.A. Kassem, A. Kaood, Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert, J. Therm. Anal. Calorim. 147 (2022) 6847–6868. https://doi.org/10.1007/s10973-021-10998-7.

DOI: 10.1007/s10973-021-10998-7

Google Scholar

[50] H.W. Chiam, W.H. Azmi, N.M. Adam, M.K.A.M. Ariffin, Numerical study of nanofluid heat transfer for different tube geometries – A comprehensive review on performance, Int. Commun. Heat Mass Transf. 86 (2017) 60–70. https://doi.org/10.1016/j.icheatmasstransfer. 2017.05.019.

DOI: 10.1016/j.icheatmasstransfer.2017.05.019

Google Scholar

[51] Ö. Aǧra, H. Demir, S. Ataylmaz Özgür, F. Kantaş, A.S. Dalklç, Numerical investigation of heat transfer and pressure drop in enhanced tubes, Int. Commun. Heat Mass Transf. 38 (2011) 1384–1391. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.013.

DOI: 10.1016/j.icheatmasstransfer.2011.07.013

Google Scholar

[52] A.H. Abdelrazek, S.N. Kazi, O.A. Alawi, N. Yusoff, C.S. Oon, H.M. Ali, Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids, J. Therm. Anal. Calorim. 139 (2020) 1637–1653. https://doi.org/10.1007/s10973-019-08562-5.

DOI: 10.1007/s10973-019-08562-5

Google Scholar

[53] M. Sharma, R. Jilte, A review on passive methods for thermal performance enhancement in parabolic trough solar collectors, Int. J. Energy Res. 45 (2021) 4932–4966. https://doi.org/10.1002/er.6212.

DOI: 10.1002/er.6212

Google Scholar

[54] S. Lukachev, V. Biryuk, A. Gorshkalev, Using Ansys Fluent to Study Gas-Dynamic and Thermal Processes in Small-Sized Two-Stroke Engine, Sci. Educ. Bauman MSTU. 14 (2014) 416–425. https://doi.org/10.7463/1214.0746454.

DOI: 10.7463/1214.0746454

Google Scholar

[55] H. Amein, B.M. Akoush, M.M. El-Bakry, M. Abubakr, M.A. Hassan, Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism, Renew. Energy. 181 (2022) 250–266. https://doi.org/10.1016/j.renene.2021.09.044.

DOI: 10.1016/j.renene.2021.09.044

Google Scholar

[56] R. Ekiciler, K. Arslan, O. Turgut, B. Kurşun, Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver, J. Therm. Anal. Calorim. 143 (2021) 1637–1654. https://doi.org/10.1007/s10973-020-09717-5.

DOI: 10.1007/s10973-020-09717-5

Google Scholar

[57] ANSYS FLUENT 13 User's Guide, Ansys Fluent Theory Guide, Canonsburg, PA, USA, (2013).

Google Scholar

[58] GNIELINSKI, V., New Equations for Heat and Mass Transfer in Turbulent Flow Through Pipes and Ducts., Forsch. Im. Ingenieurwessen. 41 (1975) (1975).

Google Scholar

[59] M.A. Hassan, N. Bailek, K. Bouchouicha, S.C. Nwokolo, Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks, Renew. Energy. 171 (2021) 191–209. https://doi.org/10.1016/j.renene.2021.02.103.

DOI: 10.1016/j.renene.2021.02.103

Google Scholar

[60] N. Bailek, K. Bouchouicha, Z. Al-Mostafa, M. El-Shimy, N. Aoun, A. Slimani, S. Al-Shehri, A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South, Renew. Energy. 117 (2018) 530–537. https://doi.org/10.1016/j.renene.2017.10. 081.

DOI: 10.1016/j.renene.2017.10.081

Google Scholar

[61] Y.A. CENGEL, From Earned Value to Value Realisation, PM World J. 4 (2015) 1–9.

Google Scholar

[62] M.A. Khan, T.O. Kleine, Histochemical and biochemical investigations of adenosine triphosphatase in vertebrate mixed muscles., Acta Histochem. Suppl. Suppl 18 (1977) 245–258.

Google Scholar

[63] B. Zou, Y. Jiang, Y. Yao, H. Yang, Thermal performance improvement using unilateral spiral ribbed absorber tube for parabolic trough solar collector, Sol. Energy. 183 (2019) 371–385. https://doi.org/10.1016/j.solener.2019.03.048.

DOI: 10.1016/j.solener.2019.03.048

Google Scholar

[64] E. Bellos, C. Tzivanidis, Z. Said, A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors, Sustain. Energy Technol. Assessments. 39 (2020) 100714. https://doi.org/10.1016/j.seta.2020.100714.

DOI: 10.1016/j.seta.2020.100714

Google Scholar

[65] M. Wirz, J. Petit, A. Haselbacher, A. Steinfeld, Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators, Sol. Energy. 107 (2014) 398–414. https://doi.org/10.1016/j.solener.2014.05.002.

DOI: 10.1016/j.solener.2014.05.002

Google Scholar

[66] N. Abed, I. Afgan, An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors, Int. J. Energy Res. 44 (2020) 5117–5164. https://doi.org/10.1002/er.5271.

DOI: 10.1002/er.5271

Google Scholar

[67] E. Bellos, C. Tzivanidis, I. Daniil, Energetic and exergetic investigation of a parabolic trough collector with internal fins operating with carbon dioxide, Int. J. Energy Environ. Eng. 8 (2017) 109–122. https://doi.org/10.1007/s40095-017-0229-5.

DOI: 10.1007/s40095-017-0229-5

Google Scholar

[68] R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver, Appl. Therm. Eng. 67 (2014) 579–586. https://doi.org/10.1016/j.applthermaleng.2014.03.053.

DOI: 10.1016/j.applthermaleng.2014.03.053

Google Scholar

[69] E. Bellos, C. Tzivanidis, A detailed exergetic analysis of parabolic trough collectors, Energy Convers. Manag. 149 (2017) 275–292. https://doi.org/10.1016/j.enconman.2017.07.035.

DOI: 10.1016/j.enconman.2017.07.035

Google Scholar