Selection of a Pavement Structure from Technically Established Alternatives Based on Construction Cost, Energy Consumption, and Carbon Footprint

Article Preview

Abstract:

This paper presents a procedure to select a pavement structure from technically established alternatives. The general proposed process relies on calculating the present worth of total cost resulting from construction, maintenance/rehabilitation, energy consumption and carbon footprint during those activities as well as recycling of the materials at their end life. However, depending on data availability, the general process could be reduced to just the construction phase as is the case in most developing countries where required pavement performance data is scarce. The reduced procedure was validated on four types of pavements for six traffic levels and three subgrade types. Under the conditions considered in this study, it was found that concrete pavements have high construction, embodied energy, and carbon footprint costs (the environmental impact represents about 66% of the total cost) as compared to other pavement types. Full-depth asphalt pavements were found to be the best ecological type, their construction cost is a little higher than the environmental one with a distribution of about 53% and 47%, respectively. Inverted pavements seem to be a good alternative to weak subgrades although the costs associated with environmental effects contribute to about 52% of the total cost.

You might also be interested in these eBooks

Info:

Pages:

85-106

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Chappat et J. Bilal, « La route écologique du futur - Consommation d'énergie et émission de gaz à effet de serre », COLAS, (2003).

Google Scholar

[2] T. Pierre Dorchies, « La route écologique du futur: Analyse de la consommation d'énergie et des émissions de gaz à effet de serre ». ColasCanada (Sintra Inc.), (2008).

DOI: 10.1787/9789264097353-8-fr

Google Scholar

[3] Céline Lenglet, Sarah Goyer, Thibaut Lambert, Arnaud Feeser, et Jean Fauqué, « Etude des éco-comparateurs Synthèse des études de cas Phase 1 », CEREMA, (2014).

Google Scholar

[4] Thives, L. P., Ghisi, E., Asphalt mixtures emission and energy consumption: A review,, Renewable and Sustainable Energy Reviews, 72, (2017), 473-484.

DOI: 10.1016/j.rser.2017.01.087

Google Scholar

[5] T. Hoang, « Tronçons autoroutiers : une méthodologie de modélisation environnementale et économique pour différents scénarios », PhD dissertation, Nantes, (2005).

Google Scholar

[6] T. Blomberg et al., « Partial life cycle inventory or eco-profile, for paving grade bitumen », European Bitumen Association (In.), Brussels, Belgium. Eurobitume report, 99, (1999).

Google Scholar

[7] Athena Institute, « A life cycle perspective on concrete and asphalt roadways: embodied primary energy and global warming potential », (2006).

Google Scholar

[8] H. Stripple, « Life Cycle Assessment of Road- A Pilot Study for Inventory Analysis », IVL Swedish Environmental Research Institute, Second Revised Edition, (2001).

Google Scholar

[9] Y. H. Huang, Pavement analysis and design, 2nd ed. Upper Saddle River, NJ: Pearson/Prentice Hall, (2004).

Google Scholar

[10] P. Gauthier, « Étude du concept de structure inverse pour le renforcement de chaussées soumises aux charges d'autobus urbains », PhD Thesis, Université Laval, (2011).

Google Scholar

[11] South African National Roads Agency (SANRAL), South African pavement engineering manual. Pretoria: SANRAL, (2013).

Google Scholar

[12] E. Tutumluer and R. D. Barksdale, « Inverted flexible pavement response and performance », Transportation research record, 1482, (1995), 102‑110.

Google Scholar

[13] E. Tutumluer, « Predicting behavior of flexible pavements with granular bases », (1995).

Google Scholar

[14] J.-F. Corté and M.-T. Goux, « Design of Pavement Structures: The French Technical Guide », Transportation Research Record No. 1539, Flexible Pavement Design and Rehabilitation Issues, (1996), 116-124.

DOI: 10.1177/0361198196153900116

Google Scholar

[15] AFNOR, NF P98-086, Dimensionnement structurel des chaussées routières- Application aux chaussées neuves, (2019).

DOI: 10.51257/a-v1-c4316

Google Scholar

[16] ISO 14040, Environmental Management – Life-Cycle Assessment - Principles and Framework (ISO 2006a).

DOI: 10.1065/lca2005.03.001

Google Scholar

[17] Harvey, J., Meijer, J., Ozer, H., Al-Qadi, I. L., Saboori, A., & Kendall, A. « Pavement life cycle assessment framework », No. FHWA-HIF-16-014,. United States, Federal Highway Administration, (2006).

Google Scholar

[18] ISO 14044, Environmental Management – Life-Cycle Assessment Requirements and Guidelines (ISO 2006b).

DOI: 10.3403/30290345

Google Scholar

[19] « éco-comparateur ECORCE2 », 2012. http://ecorce2.ifsttar.fr/use.php.

Google Scholar

[20] A. Ventura, M. Dauvergne, A. Jullien, et P. Tamagny, « ECORCE 1.0 : Eco-comparateur routes, construction et entretien », Revue générale des Routes RGRA, 883, (2010).

Google Scholar

[21] S. Nocera, O. I. Galati, and F. Cavallaro, « On the Uncertainty in the Economic Valuation of Carbon Emissions from Transport », Journal of Transport Economics and Policy, 52, (2018).

Google Scholar

[22] International Bank for Reconstruction and Development, the World Bank, Carbon Pricing Leadership Coalition, Carbon Pricing Leadership Report, Washington DC, (2020).

Google Scholar