Prediction of the Hardness of Pulverized Glass Waste-Reinforced Aluminium Alloy 6061-T6 Friction Stir Welded Joint

Article Preview

Abstract:

The purpose of this study is to investigate the friction stir weld quality of pulverized glass waste (PGW)-reinforced AA6061-T6 and develop a model predicting the hardness of the joint. Friction stir welding of PGW-reinforced AA6061-T6 was done within a process window. The process was optimized for the maximum joint hardness. Thereafter, the result of the hardness was used to develop a model using a novel statistical analytical technique. The addition of PGW enhanced the AA6061-T6 friction stir welded joint hardness. The maximum hardness (112 HV) of the PGW-reinforced joint, which was obtained at optimal setting of 900 rpm rotational speed, 40 mm/min traverse speed and 1o tilt angle, is by a factor of 1.72 greater than the unreinforced joint and close to the hardness of the as-received AA6061-T6 (120 HV). The developed model can predict the hardness of the PGW-reinforced AA6061-T6 joint up to an accuracy of 89%. The model shows that the rotational speed, tilt angle and their interaction contributed significantly to the hardness of the PGW-reinforced AA6061-T6 friction stir welded joint. This model is suitable for determining the hardness property of particle-reinforced AA6061-T6 friction stir welded joint at varying processing parameters.

You might also be interested in these eBooks

Info:

Pages:

31-42

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang, X., Yang, W. and Xiao, R. (2015). Microstructure and mechanical properties of laser beam welded Al−Li alloy 2060 with Al−Mg filler wire,, Materials and Design. Vol. 88, p.446−450. https://doi.org/10.1016/j.matdes.2015.08.144.

DOI: 10.1016/j.matdes.2015.08.144

Google Scholar

[2] Abioye, T.E., Zuhailawati, H., Aizad, S. and Anasyida, A.S. (2019). "Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications. Transaction of Non-ferrous Metals Society of China, Vol. 29 No. 4, p.667–679. https://doi.org/10.1016/S1003-6326(19)64977-0.

DOI: 10.1016/s1003-6326(19)64977-0

Google Scholar

[3] Kumar, N., Patel, V. K. (2020). Effect of SiC/Si3N4 micro-reinforcement on mechanical and wear properties of friction stir welded AA6061-T6 aluminum alloy,, SN Applied Sciences. Vol. 2, p.1572. https://doi.org/10.1007/s42452-020-03381-y.

DOI: 10.1007/s42452-020-03381-y

Google Scholar

[4] Chen, W. and Molian, P. (2008). Dual-beam laser welding of ultra-thin AA5052-H19 aluminum,, International Journal of Advanced Manufacturing Technology. Vol. 39, p.889−897. https://doi.org/10.1007/s00170-007-1278-3.

DOI: 10.1007/s00170-007-1278-3

Google Scholar

[5] Yuce, C., Tutar, M., Karpat, F., Yavuz, N. and Tekin, G. (2017). Effect of process parameters on the microstructure and mechanical performance of fiber laser welded AA5182 aluminum alloys,, Strojniški Vestnik−Journal of Mechanical Engineering. Vol. 63, p.510−518. https://doi.org/10.5545/sv-jme.2017.4442.

DOI: 10.5545/sv-jme.2017.4442

Google Scholar

[6] Threadgill, P.L., Leonard, A.J., Shercliff, H.R. and Withers, P.J. (2009). Friction stir welding of aluminium alloys, International Materials Reviews. Vol. 54, No. 2, p.49–93. https://doi.org/10.1179/174328009X411136.

DOI: 10.1179/174328009x411136

Google Scholar

[7] Fouladi, S. and Abbasi, M. (2017). The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint,, Journal of Materials Processing Technology. Vol. 243, pp.23-30. https://doi.org/10.1016/j.jmatprotec.2016.12.005.

DOI: 10.1016/j.jmatprotec.2016.12.005

Google Scholar

[8] Ogunsemi, B.T., Abioye, T.E., Orekunrin, F., Oladimeji, P. O., Babatunde, J.R., Ogedengbe, T.I. (2022). Joint quality enhancement of AA6061-T6 friction stir weldment by reinforcing with pulverized glass waste using different reinforcement strategies,, EngineeringResearch Express. Vol. 4, 025023. https://orcid.org/0000-0003-2230-8770.

DOI: 10.1088/2631-8695/ac6ece

Google Scholar

[9] Jacquin, D. and Guillemot, G. (2021). A review of microstructural changes occurring during FSW in aluminium alloys and their modelling,, Journal of Materials Processing Technology. Vol. 288, p.116706. https://doi.org/10.1016/j.jmatprotec.2020.116706.

DOI: 10.1016/j.jmatprotec.2020.116706

Google Scholar

[10] Safeen, W., Hussain, S., Wasim, A., Jahanzaib, M., Aziz, H. and Abdalla, H. (2016). Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology,, The International Journal of Advanced Manufacturing Technology. Vol. 87 No. 5-8, p.1765–1781. https://doi.org/10.1007/s00170-016-8565-9.

DOI: 10.1007/s00170-016-8565-9

Google Scholar

[11] Raja, S., Muhamad, M.R., Jamaludin, M.F. and Yusof, F. (2020). A review on nanomaterials reinforcement in friction stir welding,, Journal of Materials Research and Technology. Vol. 9 No. 6, pp.16459-16487. https://doi.org/10.1016/j.jmrt.2020.11.072.

DOI: 10.1016/j.jmrt.2020.11.072

Google Scholar

[12] Abioye, T.E., Mustar, N., Zuhailawati, H. and Suhaina, I. (2019), Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis,, The International Journal of Advanced Manufacturing Technology, Vol. 102 No. 5-8, p.1951–1962. https://doi.org/10.1007/s00170-019-03310-3.

DOI: 10.1007/s00170-019-03310-3

Google Scholar

[13] Li, Y.Z., Zan, Y.N., Wang, Q.Z., Xiao, B.L.and Ma, Z.Y. (2019). Effect of welding speed and post-weld aging on the microstructure and mechanical properties of friction stir welded B4Cp/6061-T6 Composites,, Journal of Materials Processing Technology. Vol. 273, p.116242. https://doi.org/10.1016/j.jmatprotec.2019.05.023.

DOI: 10.1016/j.jmatprotec.2019.05.023

Google Scholar

[14] Radhika, C., Shyam, K.N. and Rajasri, R. I. (2022). Investigation of microstructural characteristics of friction stir welded AA6061 joint with different particulate reinforcements addition,, AIP Conference Proceedings. Vol. 2418, 179582. https://doi.org/10.1063/5.0081797.

DOI: 10.1063/5.0081797

Google Scholar

[15] Singh, T., Tiwari, S.K., Shukla, T.K. (2020). Mechanical and microstructural characterization of friction stir welded AA6061-T6 joints reinforced with nano-sized particles,, Materials Characterization. Vol. 159,  110047. https://doi.org/10.1016/j.matchar.2019.110047.

DOI: 10.1016/j.matchar.2019.110047

Google Scholar

[16] Singh, T., Tiwari, S.K., Shukla, T.K. (2020). Production of AA6061-T6/Al2O3reinforced nanocomposite using friction stir welding,, Engineering Research Express. Vol. 1(2), 025052. https://orcid.org/0000-0003-1952-6275.

DOI: 10.1088/2631-8695/ab5e27

Google Scholar

[17] Suraya, S., Shamsuddin, S., Nur, N. J. and Yusof, I. (2014). Studies on tensile properties of titanium carbide (TiC) particulate composites,, Advanced Materials Research. Vol. 903, pp.151-156. https://doi.org/10.4028/www.scientific.net/AMR.903.151.

DOI: 10.4028/www.scientific.net/amr.903.151

Google Scholar

[18] Maurya, R., Kumar, B., Anirban, S., Ramkumar, J. and Balani, K. (2016). Effects of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy,, Materials and Design. Vol. 98, pp.155-166. https://doi.org/10.1016/j.matdes.2016.03.021.

DOI: 10.1016/j.matdes.2016.03.021

Google Scholar

[19] Zuhailawati, H., Halmy, M.N., Almanar, I.P. and Dhindaw, B.K., (2014). Friction stir processed of 6061-T6 aluminium alloy reinforced with silica from rice husk ash,, Advanced Materials Research. Vol. 1024, pp.227-230. https://doi.org/10.4028/www.scientific.net/AMR.1024.227.

DOI: 10.4028/www.scientific.net/amr.1024.227

Google Scholar

[20] Pradeepraj, A. and Tamilamudhan, P. (2017). Effect of rice husk ash and SiC particles on hardness and microstructure of friction stir welded metal matrix composites,, International Journal for Scientific Research and Development. Vol. 5, pp.1-6.

Google Scholar

[21] Barlet, M., Delaye, J.M., Charpentier, T., Gennisson, M., Bonamy, D., Rouxel, T. and Rountree, C.L. (2015). Hardness and toughness of sodium borosilicate glasses via Vickers indentations,, Journal of Non-Crystalline Solids. Vol. 417, pp.66-79. https://doi.org/10.1016/j.jnoncrysol. 2015.02.005.

DOI: 10.1016/j.jnoncrysol.2015.02.005

Google Scholar

[22] Singh, T., Tiwari S.K. and Shukla, D.K. (2019). Mechanical and Microstructural Characterization of Friction Stir Welded AA6061-T6 joints reinforced with nano-sized particles,, Journal of Material Characterization, Vol. 159, p.110047. https://doi.org/10.1016/j.matchar.2019.110047.

DOI: 10.1016/j.matchar.2019.110047

Google Scholar

[23] Zhao, D., Wang, Y., Liang, D. and Zhang, P. (2016). Modeling and process analysis of resistance spot welded DP600 joints based on regression analysis,, Materials and Design. Vol. 110, p.676–684. https://doi.org/10.1016/j.matdes.2016.08.038.

DOI: 10.1016/j.matdes.2016.08.038

Google Scholar