Valorization of Moroccan Hemp Waste: Study of the Possibility of its Use in Thermal and Acoustical Insulation of Buildings

Article Preview

Abstract:

This paper aims to study the possibility of valorizing hemp residues in order to develop new local bio-composites from Moroccan hemp shiv and epoxy. The goal is to use them as thermal and acoustical insulation panels since these hemp residues exist in large quantities in landfills and present a national concern due to a lack of waste management technologies. For this purpose, several samples were prepared for different densities and two sizes of hemp shiv; crushed shiv (CS) and fibred shiv (FS). The results revealed that the increase of density resulted in an increase in thermal conductivity and a decrease in thermal diffusivity. However, the thermal conductivity of composites is still lower than 0.1 W/mK for the most studied samples. The samples show values of acoustic absorption coefficients varying between 0.2 and 0.59 for crushed shiv composites (CSC) at the frequency range (578-1396 Hz) and between 0.2 and 0.73 at the frequency range (662-1396 Hz) for Fibred shiv composites (FSC). It has been observed that the density has a significant effect on the sound absorption coefficient. Increasing the density shifts the acoustic absorption curve towards the low frequencies. Also, decreasing the particle size enhances the sound absorption in the medium frequency range (300-600 Hz). The obtained results are satisfactory for manufacturing these new composites that can be used as thermal and acoustic insulators. Moreover, it offered the best solution for hemp waste management.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] The World Bank, "Trends in Solid Waste Management.

Google Scholar

[2] Generizon, "Les déchets organiques. – waste to energy. | biogaz. | propre. durable. faisable.

Google Scholar

[3] O. Das, A. K. Sarmah, and D. Bhattacharyya, Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties, Waste Manag. 49 (2016) 560–570.

DOI: 10.1016/j.wasman.2015.12.007

Google Scholar

[4] Légalisation du cannabis thérapeutique au Maroc : Quelles opportunités pour les petits producteurs du Rif? | Heinrich-Böll-Stiftung | Rabat - Maroc, Heinrich-Böll-Stiftung, (2022).

Google Scholar

[5] D. G. Potter, M. M. Bouchard, and M. T. Decorte, World Wide Weed: Global Trends in Cannabis Cultivation and its Control. Ashgate Publishing, Ltd., 2013.

DOI: 10.1080/17440572.2011.645287

Google Scholar

[6] United Nations Office on and Drugs and Crime, Maroc enquête sur le Cannabis 2004, 2005.

Google Scholar

[7] La culture légale du cannabis, une opportunité écologique (Experts), Médias24, (2021).

Google Scholar

[8] Loi n° 13-21 du 3 hija 1442 (14 juillet 2021) relative aux usages licites du cannabis : BORM n° 7006, 22 juill. (2021).

Google Scholar

[9] J. Bellakhdar, L'histoire du chanvre au Maghreb, Hespéris-Tamuda. XLVIII (2013) 107-141.

Google Scholar

[10] T. Blickman, Le Maroc et le cannabis: Réduction, endiguement ou acceptation, 2017.

Google Scholar

[11] A. Benallel, A. Tilioua, M. Ettakni, M. Ouakarrouch, M. Garoum, and M. A. Alaoui Hamdi, Design and thermophysical characterization of new thermal insulation panels based on cardboard waste and vegetable fibers, Sustain. Energy Technol. Assess. 48 (2021) 101639.

DOI: 10.1016/j.seta.2021.101639

Google Scholar

[12] M. Ouakarrouch, S. Bousshine, A. Bybi, N. Laaroussi, and M. Garoum, Acoustic and thermal performances assessment of sustainable insulation panels made from cardboard waste and natural fibers, Appl. Acoust. 199 (2022) 109007.

DOI: 10.1016/j.apacoust.2022.109007

Google Scholar

[13] E. Cintura, L. Nunes, E. Bruno, and F. Paulina, Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries, Ind. Crops Prod. 171 (2021) 113833.

DOI: 10.1016/j.indcrop.2021.113833

Google Scholar

[14] S. Schiavoni, F. D׳Alessandro, F. Bianchi, and F. Asdrubali, Insulation materials for the building sector: A review and comparative analysis, Renew. Sustain. Energy Rev. 62 (2016) 988–1011.

DOI: 10.1016/j.rser.2016.05.045

Google Scholar

[15] M. Viel, F. Collet, and C. Lanos, Chemical and multi-physical characterization of agro-resources' by-product as a possible raw building material, Ind. Crops Prod.120(2018)214–237.

DOI: 10.1016/j.indcrop.2018.04.025

Google Scholar

[16] A. Hussain, J. Calabria-Holley, L. Mike, and Y. Jiang, Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites, Constr. Build. Mater. 212 (2019) 561–568.

DOI: 10.1016/j.conbuildmat.2019.04.029

Google Scholar

[17] V. Cerezo, Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique, PhD thesis, France, 2005.

Google Scholar

[18] B. Mazhoud, F. Collet, S. Prétot, and C. Lanos, Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites, Constr. Build. Mater. 300 (2021) 123878.

DOI: 10.1016/j.conbuildmat.2021.123878

Google Scholar

[19] D. J. Oldham, C.A. Egan, and R. D. Cookson, Sustainable acoustic absorbers from the biomass, Appl. Acoust. 72 (2011) 350–363.

DOI: 10.1016/j.apacoust.2010.12.009

Google Scholar

[20] P. Glé, Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation, PhD thesis, INSA de Lyon, 2013.

Google Scholar

[21] U. Berardi and G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852.

DOI: 10.1016/j.buildenv.2015.05.029

Google Scholar

[22] P. Glé, E. Gourdon, and L. Arnaud, Acoustical properties of materials made of vegetable particles with several scales of porosity, Appl. Acoust. 77 (2011) 249–259.

DOI: 10.1016/j.apacoust.2010.11.003

Google Scholar

[23] M. Brümmer, M. P. Sáez-Pérez, and J. D. Suárez, Hemp-Clay Concretes for Environmental Building—Features that Attribute to Drying, Stabilization with Lime, Water Uptake and Mechanical Strength, in Advances in Natural Fibre Composites, R. Fangueiro and S. Rana, Eds. Cham: Springer International Publishing. (2018) 249–265.

DOI: 10.1007/978-3-319-64641-1_21

Google Scholar

[24] M. Charai, H. Sghiouri, A. Mezrhab, and M. Karkri, Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials, J. Clean. Prod. 292 (2021) 126064.

DOI: 10.1016/j.jclepro.2021.126064

Google Scholar

[25] NF P18-560, Granulats - Analyse granulométrique par tamisage, (1990).

Google Scholar

[26] NF EN 196-2.2, Méthodes d'essais des ciments-Partie 2: Analyse chimique des ciments, (2005).

Google Scholar

[27] ASTM C114, Standard Test Methods for Chemical Analysis of Hydraulic Cement, (2018).

Google Scholar

[28] ISO 8302, Thermal Insulation – Determination of Steady-State Thermal Resistance and Related Properties – Guarded Hot Plate Apparatus, (1991).

Google Scholar

[29] W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys. 32 (1961) 1679–1684.

DOI: 10.1063/1.1728417

Google Scholar

[30] ASTM E1461-13, Standard Test Method for Thermal Diffusivity by the Flash Method, (2020).

Google Scholar

[31] D. Taoukil, Caractérisation thermique, hydrique et mécanique du béton allégé avec les résidus de bois, PhD thesis, Abdelmalek Essaadi University, Morocco, 2011.

Google Scholar

[32] A. Degiovanni, Conductivité et diffusivité thermique des solides, Ref : TIP672WEB - Mesures physiques, 1994.

DOI: 10.51257/a-v1-r2850

Google Scholar

[33] A. Degiovanni and M. Laurent, Une nouvelle technique d'identification de la diffusivité thermique pour la méthode ' flash, Rev. Phys. Appl. 21 (1986) 229–237.

DOI: 10.1051/rphysap:01986002103022900

Google Scholar

[34] R. Yezou, J.-C. Cubaud, Contribution à l'étude des propriétés thermophysiques des matériaux de construction cohérents et non cohérents, PhD thesis, INSA de Lyon, 1978.

Google Scholar

[35] ISO 10534-2:1998, Acoustique — Détermination du facteur d'absorption acoustique et de l'impédance des tubes d'impédance — Partie 2: Méthode de la fonction de transfert. (1996).

Google Scholar

[36] J. M. Mathews, B. Vivek, and M. Charde, Thermal insulation panels for buildings using recycled cardboard: Experimental characterization and optimum selection, Energy Build. 281 (2023) 112747.

DOI: 10.1016/j.enbuild.2022.112747

Google Scholar

[37] L. D. Hung Anh and Z. Pásztory, An overview of factors influencing thermal conductivity of building insulation materials, J. Build. Eng. 44 (2021) 102604.

DOI: 10.1016/j.jobe.2021.102604

Google Scholar

[38] S. Liuzzi, C. Rubino, P. Stefanizzi, and F. Martellotta, Performance Characterization of Broad Band Sustainable Sound Absorbers Made of Almond Skins, Materials 13 (2020) 5474.

DOI: 10.3390/ma13235474

Google Scholar

[39] A. Abdou and I. Budaiwi, The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content, Constr. Build. Mater. 43 (2013) 533–544.

DOI: 10.1016/j.conbuildmat.2013.02.058

Google Scholar

[40] M. Chikhi, B. Agoudjil, A. Boudenne, and A. Gherabli, Experimental investigation of new biocomposite with low cost for thermal insulation, Energy Build. 66 (2013) 267–273.

DOI: 10.1016/j.enbuild.2013.07.019

Google Scholar

[41] S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, and L. Goudet, Mechanical and thermal properties of lime and hemp concrete ('hempcrete') manufactured by a projection process, Constr. Build. Mater. 22 (2008) 2116–2123.

DOI: 10.1016/j.conbuildmat.2007.07.016

Google Scholar

[42] A. Vimmrová, M. Keppert, L. Svoboda, and R. Černý, Lightweight gypsum composites: Design strategies for multi-functionality, Cem. Concr. Compos. 33 (2011) 84–89.

DOI: 10.1016/j.cemconcomp.2010.09.011

Google Scholar

[43] M. Ouakarrouch, K. El Azhary, N. Laaroussi, M. Garoum, and F. Kifani-Sahban, Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste, Therm. Sci. Eng. Prog. 19 (2020) 100642.

DOI: 10.1016/j.tsep.2020.100642

Google Scholar

[44] A. El bouardi, H. Ezbakhe, T. Ajzoul, V. Wittwer, and U. A. Essaadi, Proprietés thermophysiques lors de changement de structure granulaire - compact. Mesures et identifications; application aux matériaux a matrice déformable et expansés a l'air : cas de la vermiculites et polystyrène, (2005).

Google Scholar

[45] O. Zine, A. El bouardi, D. Taoukil, E.-H. Kadri, and I. El abbassi, "Influence of Density and Water Content on The Thermal Diffusivity of Wood Chips, E3S Web Conf. 321 (2021) 02010.

DOI: 10.1051/e3sconf/202132102010

Google Scholar

[46] D. Taoukil, A. El bouardi, F. Sick, A. Mimet, H. Ezbakhe, and T. Ajzoul, Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite, Constr. Build. Mater. 48 (2013) 104–115.

DOI: 10.1016/j.conbuildmat.2013.06.067

Google Scholar

[47] P. Meukam, Valorisation des briques de terre stabilisées en vue de l'isolation thermique de bâtiments, PhD thesis, Cergy-Pontoise, 2004.

DOI: 10.1617/13802

Google Scholar

[48] I. Niang et al., Hygrothermal performance of various Typha–clay composite, J. Build. Phys. 42 (2018) 316–335.

Google Scholar

[49] R. Mirzanamadi, P. Johansson, and S. A. Grammatikos, Thermal properties of asphalt concrete: A numerical and experimental study, Constr. Build. Mater. 158 (2018) 774–785.

DOI: 10.1016/j.conbuildmat.2017.10.068

Google Scholar

[50] O. Kinnane, A. Reilly, J. Grimes, S. Pavia, and R. Walker, Acoustic absorption of hemp-lime construction, Constr. Build. Mater. 122 (2016) 674–682.

DOI: 10.1016/j.conbuildmat.2016.06.106

Google Scholar

[51] E. Taban, S. Amininasab, P. Soltani, U. Berardi, D. D. Abdi, and S. E. Samaei, Use of date palm waste fibers as sound absorption material, J. Build. Eng. 41 (2021) 102752.

DOI: 10.1016/j.jobe.2021.102752

Google Scholar

[52] S. Ersoy and H. Küçük, Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties, Appl. Acoust. 70 (2009) 215–220.

DOI: 10.1016/j.apacoust.2007.12.005

Google Scholar

[53] K.S.K. Sasikumar, Acoustic characterization of farm residues for sound absorption applications, Mater. Today 33 (2020) 2917-2922.

DOI: 10.1016/j.matpr.2020.02.884

Google Scholar

[54] N. H. Bhingare and S. Prakash, An experimental and theoretical investigation of coconut coir material for sound absorption characteristics, Mater. Today Proc. 43 (2021) 1545–1551.

DOI: 10.1016/j.matpr.2020.09.401

Google Scholar

[55] A. Boubel, M. Garoum, S. Bousshine, and A. Bybi, Investigation of loose wood chips and sawdust as alternative sustainable sound absorber materials, Appl. Acoust. 172 (2021) 107639.

DOI: 10.1016/j.apacoust.2020.107639

Google Scholar

[56] A. Putra et al., Waste Durian Husk Fibers as Natural Sound Absorber: Performance and Acoustic Characterization, Buildings 12 (2022).

DOI: 10.3390/buildings12081112

Google Scholar