[1]
The World Bank, "Trends in Solid Waste Management.
Google Scholar
[2]
Generizon, "Les déchets organiques. – waste to energy. | biogaz. | propre. durable. faisable.
Google Scholar
[3]
O. Das, A. K. Sarmah, and D. Bhattacharyya, Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties, Waste Manag. 49 (2016) 560–570.
DOI: 10.1016/j.wasman.2015.12.007
Google Scholar
[4]
Légalisation du cannabis thérapeutique au Maroc : Quelles opportunités pour les petits producteurs du Rif? | Heinrich-Böll-Stiftung | Rabat - Maroc, Heinrich-Böll-Stiftung, (2022).
Google Scholar
[5]
D. G. Potter, M. M. Bouchard, and M. T. Decorte, World Wide Weed: Global Trends in Cannabis Cultivation and its Control. Ashgate Publishing, Ltd., 2013.
DOI: 10.1080/17440572.2011.645287
Google Scholar
[6]
United Nations Office on and Drugs and Crime, Maroc enquête sur le Cannabis 2004, 2005.
Google Scholar
[7]
La culture légale du cannabis, une opportunité écologique (Experts), Médias24, (2021).
Google Scholar
[8]
Loi n° 13-21 du 3 hija 1442 (14 juillet 2021) relative aux usages licites du cannabis : BORM n° 7006, 22 juill. (2021).
Google Scholar
[9]
J. Bellakhdar, L'histoire du chanvre au Maghreb, Hespéris-Tamuda. XLVIII (2013) 107-141.
Google Scholar
[10]
T. Blickman, Le Maroc et le cannabis: Réduction, endiguement ou acceptation, 2017.
Google Scholar
[11]
A. Benallel, A. Tilioua, M. Ettakni, M. Ouakarrouch, M. Garoum, and M. A. Alaoui Hamdi, Design and thermophysical characterization of new thermal insulation panels based on cardboard waste and vegetable fibers, Sustain. Energy Technol. Assess. 48 (2021) 101639.
DOI: 10.1016/j.seta.2021.101639
Google Scholar
[12]
M. Ouakarrouch, S. Bousshine, A. Bybi, N. Laaroussi, and M. Garoum, Acoustic and thermal performances assessment of sustainable insulation panels made from cardboard waste and natural fibers, Appl. Acoust. 199 (2022) 109007.
DOI: 10.1016/j.apacoust.2022.109007
Google Scholar
[13]
E. Cintura, L. Nunes, E. Bruno, and F. Paulina, Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries, Ind. Crops Prod. 171 (2021) 113833.
DOI: 10.1016/j.indcrop.2021.113833
Google Scholar
[14]
S. Schiavoni, F. D׳Alessandro, F. Bianchi, and F. Asdrubali, Insulation materials for the building sector: A review and comparative analysis, Renew. Sustain. Energy Rev. 62 (2016) 988–1011.
DOI: 10.1016/j.rser.2016.05.045
Google Scholar
[15]
M. Viel, F. Collet, and C. Lanos, Chemical and multi-physical characterization of agro-resources' by-product as a possible raw building material, Ind. Crops Prod.120(2018)214–237.
DOI: 10.1016/j.indcrop.2018.04.025
Google Scholar
[16]
A. Hussain, J. Calabria-Holley, L. Mike, and Y. Jiang, Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites, Constr. Build. Mater. 212 (2019) 561–568.
DOI: 10.1016/j.conbuildmat.2019.04.029
Google Scholar
[17]
V. Cerezo, Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique, PhD thesis, France, 2005.
Google Scholar
[18]
B. Mazhoud, F. Collet, S. Prétot, and C. Lanos, Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites, Constr. Build. Mater. 300 (2021) 123878.
DOI: 10.1016/j.conbuildmat.2021.123878
Google Scholar
[19]
D. J. Oldham, C.A. Egan, and R. D. Cookson, Sustainable acoustic absorbers from the biomass, Appl. Acoust. 72 (2011) 350–363.
DOI: 10.1016/j.apacoust.2010.12.009
Google Scholar
[20]
P. Glé, Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation, PhD thesis, INSA de Lyon, 2013.
Google Scholar
[21]
U. Berardi and G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Build. Environ. 94 (2015) 840–852.
DOI: 10.1016/j.buildenv.2015.05.029
Google Scholar
[22]
P. Glé, E. Gourdon, and L. Arnaud, Acoustical properties of materials made of vegetable particles with several scales of porosity, Appl. Acoust. 77 (2011) 249–259.
DOI: 10.1016/j.apacoust.2010.11.003
Google Scholar
[23]
M. Brümmer, M. P. Sáez-Pérez, and J. D. Suárez, Hemp-Clay Concretes for Environmental Building—Features that Attribute to Drying, Stabilization with Lime, Water Uptake and Mechanical Strength, in Advances in Natural Fibre Composites, R. Fangueiro and S. Rana, Eds. Cham: Springer International Publishing. (2018) 249–265.
DOI: 10.1007/978-3-319-64641-1_21
Google Scholar
[24]
M. Charai, H. Sghiouri, A. Mezrhab, and M. Karkri, Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials, J. Clean. Prod. 292 (2021) 126064.
DOI: 10.1016/j.jclepro.2021.126064
Google Scholar
[25]
NF P18-560, Granulats - Analyse granulométrique par tamisage, (1990).
Google Scholar
[26]
NF EN 196-2.2, Méthodes d'essais des ciments-Partie 2: Analyse chimique des ciments, (2005).
Google Scholar
[27]
ASTM C114, Standard Test Methods for Chemical Analysis of Hydraulic Cement, (2018).
Google Scholar
[28]
ISO 8302, Thermal Insulation – Determination of Steady-State Thermal Resistance and Related Properties – Guarded Hot Plate Apparatus, (1991).
Google Scholar
[29]
W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys. 32 (1961) 1679–1684.
DOI: 10.1063/1.1728417
Google Scholar
[30]
ASTM E1461-13, Standard Test Method for Thermal Diffusivity by the Flash Method, (2020).
Google Scholar
[31]
D. Taoukil, Caractérisation thermique, hydrique et mécanique du béton allégé avec les résidus de bois, PhD thesis, Abdelmalek Essaadi University, Morocco, 2011.
Google Scholar
[32]
A. Degiovanni, Conductivité et diffusivité thermique des solides, Ref : TIP672WEB - Mesures physiques, 1994.
DOI: 10.51257/a-v1-r2850
Google Scholar
[33]
A. Degiovanni and M. Laurent, Une nouvelle technique d'identification de la diffusivité thermique pour la méthode ' flash, Rev. Phys. Appl. 21 (1986) 229–237.
DOI: 10.1051/rphysap:01986002103022900
Google Scholar
[34]
R. Yezou, J.-C. Cubaud, Contribution à l'étude des propriétés thermophysiques des matériaux de construction cohérents et non cohérents, PhD thesis, INSA de Lyon, 1978.
Google Scholar
[35]
ISO 10534-2:1998, Acoustique — Détermination du facteur d'absorption acoustique et de l'impédance des tubes d'impédance — Partie 2: Méthode de la fonction de transfert. (1996).
Google Scholar
[36]
J. M. Mathews, B. Vivek, and M. Charde, Thermal insulation panels for buildings using recycled cardboard: Experimental characterization and optimum selection, Energy Build. 281 (2023) 112747.
DOI: 10.1016/j.enbuild.2022.112747
Google Scholar
[37]
L. D. Hung Anh and Z. Pásztory, An overview of factors influencing thermal conductivity of building insulation materials, J. Build. Eng. 44 (2021) 102604.
DOI: 10.1016/j.jobe.2021.102604
Google Scholar
[38]
S. Liuzzi, C. Rubino, P. Stefanizzi, and F. Martellotta, Performance Characterization of Broad Band Sustainable Sound Absorbers Made of Almond Skins, Materials 13 (2020) 5474.
DOI: 10.3390/ma13235474
Google Scholar
[39]
A. Abdou and I. Budaiwi, The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content, Constr. Build. Mater. 43 (2013) 533–544.
DOI: 10.1016/j.conbuildmat.2013.02.058
Google Scholar
[40]
M. Chikhi, B. Agoudjil, A. Boudenne, and A. Gherabli, Experimental investigation of new biocomposite with low cost for thermal insulation, Energy Build. 66 (2013) 267–273.
DOI: 10.1016/j.enbuild.2013.07.019
Google Scholar
[41]
S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, and L. Goudet, Mechanical and thermal properties of lime and hemp concrete ('hempcrete') manufactured by a projection process, Constr. Build. Mater. 22 (2008) 2116–2123.
DOI: 10.1016/j.conbuildmat.2007.07.016
Google Scholar
[42]
A. Vimmrová, M. Keppert, L. Svoboda, and R. Černý, Lightweight gypsum composites: Design strategies for multi-functionality, Cem. Concr. Compos. 33 (2011) 84–89.
DOI: 10.1016/j.cemconcomp.2010.09.011
Google Scholar
[43]
M. Ouakarrouch, K. El Azhary, N. Laaroussi, M. Garoum, and F. Kifani-Sahban, Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste, Therm. Sci. Eng. Prog. 19 (2020) 100642.
DOI: 10.1016/j.tsep.2020.100642
Google Scholar
[44]
A. El bouardi, H. Ezbakhe, T. Ajzoul, V. Wittwer, and U. A. Essaadi, Proprietés thermophysiques lors de changement de structure granulaire - compact. Mesures et identifications; application aux matériaux a matrice déformable et expansés a l'air : cas de la vermiculites et polystyrène, (2005).
Google Scholar
[45]
O. Zine, A. El bouardi, D. Taoukil, E.-H. Kadri, and I. El abbassi, "Influence of Density and Water Content on The Thermal Diffusivity of Wood Chips, E3S Web Conf. 321 (2021) 02010.
DOI: 10.1051/e3sconf/202132102010
Google Scholar
[46]
D. Taoukil, A. El bouardi, F. Sick, A. Mimet, H. Ezbakhe, and T. Ajzoul, Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite, Constr. Build. Mater. 48 (2013) 104–115.
DOI: 10.1016/j.conbuildmat.2013.06.067
Google Scholar
[47]
P. Meukam, Valorisation des briques de terre stabilisées en vue de l'isolation thermique de bâtiments, PhD thesis, Cergy-Pontoise, 2004.
DOI: 10.1617/13802
Google Scholar
[48]
I. Niang et al., Hygrothermal performance of various Typha–clay composite, J. Build. Phys. 42 (2018) 316–335.
Google Scholar
[49]
R. Mirzanamadi, P. Johansson, and S. A. Grammatikos, Thermal properties of asphalt concrete: A numerical and experimental study, Constr. Build. Mater. 158 (2018) 774–785.
DOI: 10.1016/j.conbuildmat.2017.10.068
Google Scholar
[50]
O. Kinnane, A. Reilly, J. Grimes, S. Pavia, and R. Walker, Acoustic absorption of hemp-lime construction, Constr. Build. Mater. 122 (2016) 674–682.
DOI: 10.1016/j.conbuildmat.2016.06.106
Google Scholar
[51]
E. Taban, S. Amininasab, P. Soltani, U. Berardi, D. D. Abdi, and S. E. Samaei, Use of date palm waste fibers as sound absorption material, J. Build. Eng. 41 (2021) 102752.
DOI: 10.1016/j.jobe.2021.102752
Google Scholar
[52]
S. Ersoy and H. Küçük, Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties, Appl. Acoust. 70 (2009) 215–220.
DOI: 10.1016/j.apacoust.2007.12.005
Google Scholar
[53]
K.S.K. Sasikumar, Acoustic characterization of farm residues for sound absorption applications, Mater. Today 33 (2020) 2917-2922.
DOI: 10.1016/j.matpr.2020.02.884
Google Scholar
[54]
N. H. Bhingare and S. Prakash, An experimental and theoretical investigation of coconut coir material for sound absorption characteristics, Mater. Today Proc. 43 (2021) 1545–1551.
DOI: 10.1016/j.matpr.2020.09.401
Google Scholar
[55]
A. Boubel, M. Garoum, S. Bousshine, and A. Bybi, Investigation of loose wood chips and sawdust as alternative sustainable sound absorber materials, Appl. Acoust. 172 (2021) 107639.
DOI: 10.1016/j.apacoust.2020.107639
Google Scholar
[56]
A. Putra et al., Waste Durian Husk Fibers as Natural Sound Absorber: Performance and Acoustic Characterization, Buildings 12 (2022).
DOI: 10.3390/buildings12081112
Google Scholar