Laboratory Geotechnical Investigations on Five Silty Soils Sampled along the Banks of the Lubumbashi River/Haut-Katanga/DR Congo

Article Preview

Abstract:

An adequate design of port structures along waterways requires a good knowledge of the geotechnical properties of the surrounding soils. This study aims to characterize the geotechnical laboratory properties of alluvial soils along the Lubumbashi river (section between the Tshombe and Tshondo bridges, approximately 3 km long) in the city of Lubumbashi, province of Haut Katanga in DR Congo. To meet this objective, five sampling zones were selected from which samples were taken with a hand auger and various geotechnical laboratory tests were performed. Identification tests reveal that the tested soils have low to moderate plasticity and are in the range of sandy silt to silty sand with a low fraction of clay particles, essentially inactive. Oedometric compression tests reveal that the soils in place are (moderately) compressible. The consolidated undrained (CU) triaxial compression and direct shear tests indicate effective values of internal friction angle and negligible drained cohesion that, are consistent for this kind of soil. In the end, the compressibility and strength parameters of the five tested soils are correlated with their plasticity index, showing a decrease in the shear strength and an increase in the compressibility when the plasticity index increase.

You might also be interested in these eBooks

Info:

Pages:

73-89

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Larouci, Y. Senhadji, L. Laoufi, A. Benazzouk, Dredged dam raw sediments geotechnical characterization for beneficial use in road construction. International Journal of Engineering Research in Africa 57(2021), 81-98. Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/jera.57.81

Google Scholar

[2] T.O. Henderson, A.R. Pickles, Geotechnical management on major infrastructure projects. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 157(4)(2004), 165-171.

DOI: 10.1680/geng.2004.157.4.165

Google Scholar

[3] L. Valenzuela, Tailings dams and hydraulic fills - The 2015 Casagrande lecture. Geotechnical Synergy in Buenos Aires 5(2015), 5-49.

Google Scholar

[4] H.F. Yonli, B. François, D.Y.K. Toguyeni, A. Pantet, Hydro-mechanical behavior of two clayey soils in presence of household waste leachates. Global Journal of Environmental Science and Management, 8(2) (2022).

Google Scholar

[5] B. François, L. Palazon, P. Gerard, Structural behaviour of unstabilized rammed earth constructions submitted to hygroscopic conditions. Construction and Building Materials 155 (2017), 164-175.

DOI: 10.1016/j.conbuildmat.2017.08.012

Google Scholar

[6] K.C. Ezenwaka, A. Ugboaja, C.V. Ahaneku, T.A. Ede, Geotechnical investigation for design and construction of civil infrastructures in parts of port Harcourt City of Rivers State, Southern Nigeria. The International Journal of Engineering Science 3(2014), 74-82.

Google Scholar

[7] B.M. Das, Principles of geotechnical engineering. Cengage learning, 2021.

Google Scholar

[8] P.J. Vardanega, M.D. Bolton, Design of geostructural systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 2(1)(2016), 04015017.

DOI: 10.1061/ajrua6.0000849

Google Scholar

[9] S. Lacasse, F. Nadim, Risk and reliability in geotechnical engineering. In Int. Conf. on Case Histories in Geotech. Eng (1998).

Google Scholar

[10] M.P. Kasongo, K.G. Mukoko, M.L. Kipata, I.J.M. Lunda, Elaboration de la carte géotechnique de la ville de Lubumbashi guide technique de sélection des sites d'implantation d'ouvrages du génie civil. European Scientific Journal, 14(2018),407-431. DOI:10.19044/esj.2018. v14n36p407

DOI: 10.19044/esj.2018.v14n36p407

Google Scholar

[11] NF EN ISO 17892-4, Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 4 : Détermination de la distribution granulométrie des particules, AFNOR, 2018.

Google Scholar

[12] NF 94-051, Sols : Reconnaissances et Essais. Détermination des limites d'Atterberg-limite de liquidité à la coupelle - limite de plasticité au Rouleau. ISSN 0335-3931, AFNOR, 1993.

Google Scholar

[13] NF 94-068, Sols : Reconnaissances et Essais. Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériaux rocheux par l'essai à la tache - ISSN 0335-3931, AFNOR, 1998.

Google Scholar

[14] E. Keng, Air and Helium Pycnometer. Powder Technology 3(1970), 179-180.

Google Scholar

[15] B.A. Mir, Manual of geotechnical laboratory soil testing. CRC Press, 2021.

Google Scholar

[16] NF P11-300, Exécution des terrassements - Classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières. AFNOR, 1992.

Google Scholar

[17] ASTM D3080-04, Standard test method for direct shear test of soils under consolidated drained conditions, ASTM, 2013.

DOI: 10.1520/d3080_d3080m

Google Scholar

[18] ASTM D4767-11, Standard test method for consolidated undrained triaxial compression test for cohesive soils, ASTM, 2020.

DOI: 10.1520/d4767-02

Google Scholar

[19] J.C. Verbrugge, C. Schroeder, Geotechnical correlations for soils and rocks. John Wiley and Sons, 2018.

Google Scholar