Microstructural Evolution of Al under Computational Analysis of Uniaxial [100] Compression

Article Preview

Abstract:

The strain rate exerts a profound influence on the mechanical characteristics of nanomaterials. To investigate this phenomenon, the molecular dynamics approach was employed to examine the impact of uniaxial compression along the [100] crystallographic direction in monocrystalline Al. The purpose of this research was to determine the differences in reactions observed during the elastic and plastic phases. It employed the Embedded Atom Method (EAM) as well as the Modified Embedded Atom Method (MEAM) potentials at 300 K. A comparative analysis of the outcomes from these potentials demonstrated considerable disparities. The results encompassed the percentage distribution of crystal structures (fcc, hcp, bcc, and others) as well as their atomic configurations. Several analytical factors were examined, including the strain-stress curve, the radial distribution function (RDF), the common neighbor analysis (CAN). The applied MEAM potential represents a subsequent occurrence of transitions following EAM, encompassing both increasing and decreasing phase transitions.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Graf, Aluminum alloys for lightweight automotive structures, in: P.K.B.T.-M. Mallick Design and Manufacturing for Lightweight Vehicles (Second Edition) (Ed.), Woodhead Publ. Mater., 2021, p.97–123.

DOI: 10.1016/b978-0-12-818712-8.00003-3

Google Scholar

[2] A.A. Luo, Recent advances in light metals and manufacturing for automotive applications, CIM J. 12 (2021) 79–87.

DOI: 10.1080/19236026.2021.1947088

Google Scholar

[3] A. Mahata, M. Asle, Evolution of solidi fi cation defects in deformation of nano-polycrystalline aluminum, Comput. Mater. Sci. 163 (2019) 176–185.

DOI: 10.1016/j.commatsci.2019.03.034

Google Scholar

[4] D. C. Rapaport, The Art of Molecular Dynamics Simulation, second edi, 2004.

Google Scholar

[5] M. P. Allen & D. J. Tildesley, Computer Simulation of Liquids, New Tork, 1987.

Google Scholar

[6] M.R.P. P. Dea, T. Frauenheim, Computer Simulation of Materials at Atomic Level, First edit, Berlin, 2000.

Google Scholar

[7] H. Chabba, M. Taoufiki, A. Barroug, A. Jouaiti, D. Dafir, Atomistic nanoindentation study of Al–Mg intermetallic compounds based on molecular dynamics simulation, Int. J. Comput. Mater. Sci. Eng. 11 (2022) 2250011.

DOI: 10.1142/s2047684122500117

Google Scholar

[8] B.S. D. Frenkel, Understanding molecular dynamics simulation from algorithms to applications, Second edi, London, 1996.

Google Scholar

[9] D. Dengpan, Z. Weiwei, B. Adam, J. Lu, A.C.T. Van Duin, V. Molinero, D. Bedrov, Multiscale Modeling of Structure , Transport and Reactivity in Alkaline Fuel Cell Membranes : Molecular Dynamics Simulations, (2018) 14.

DOI: 10.3390/polym10111289

Google Scholar

[10] M. Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti, Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation, Int. J. Eng. Res. Africa. 61 (2022) 1–15.

DOI: 10.4028/p-0xoa4x

Google Scholar

[11] M.A. Cooper, M.S. Oliver, D.C. Bufford, B.C. White, J.B. Lechman, Compression behavior of microcrystalline cellulose spheres : Single particle compression and con fi ned bulk compression across regimes, Powder Technol. 374 (2020) 10–21.

DOI: 10.1016/j.powtec.2020.06.089

Google Scholar

[12] T. Benitez, J. Sandro, R. Murillo, D. De Ligny, N. Travitzky, A. Pedro, N. De Oliveira, D. Hotza, Modeling the e ff ect of the addition of alumina on structural characteristics and tensile deformation response of aluminosilicate glasses, Ceram. Int. 46 (2020) 21657–21666.

DOI: 10.1016/j.ceramint.2020.05.273

Google Scholar

[13] J.-P.A.I. and W.W. A. S. Krausz, J. I. Dickson, constitutive laws of plastic deformation and fracture, 19th ed., KLUWER ACADEMIC PUBLISHERS, Ottawa, 1989.

Google Scholar

[14] T.B. Massalski, Massalski T.B. Binary alloy phase diagrams. V2, (1986) 1129.

Google Scholar

[15] S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B. 33 (1986) 7983–7991.

DOI: 10.1103/physrevb.33.7983

Google Scholar

[16] M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443–6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[17] P. GANSTER, Modelling of nuclear glasses by classical and ab initio molecular dynamics, MONPELLIER II, 2005.

Google Scholar

[18] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.

DOI: 10.1103/physrevb.46.2727

Google Scholar

[19] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.

DOI: 10.1103/PhysRevB.46.2727

Google Scholar

[20] K. Ji, C. Arson, Tensile strength of calcite/HMWM and silica/HMWM interfaces: A Molecular Dynamics analysis, Constr. Build. Mater. 251 (2020).

DOI: 10.1016/j.conbuildmat.2020.118925

Google Scholar

[21] L. Verlet, Computer "experiments" on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968) 201–214.

DOI: 10.1103/PhysRev.165.201

Google Scholar

[22] C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 0–15.

DOI: 10.1063/1.2013227

Google Scholar

[23] X.X. Zhang, H. Andrä, S. Harjo, W. Gong, T. Kawasaki, A. Lutz, M. Lahres, Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation, Mater. Des. 198 (2021) 1–9.

DOI: 10.1016/j.matdes.2020.109339

Google Scholar

[24] J. Guénolé, W.G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, E. Bitzek, Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS, Comput. Mater. Sci. 175 (2020) 109584.

DOI: 10.1016/j.commatsci.2020.109584

Google Scholar

[25] Y. Wang, J. Zuo, N. Jiang, K. Niu, Y. Wu, Uniaxial tension deformation study of copper/nickel laminated composites: Effects of lamella number and interlamellar spacing, Comput. Mater. Sci. 171 (2020) 109272.

DOI: 10.1016/j.commatsci.2019.109272

Google Scholar

[26] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 17 (1995) 1–19.

DOI: 10.1039/c7sm02429k

Google Scholar

[27] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2010) 15012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[28] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276.

DOI: 10.1107/S0021889811038970

Google Scholar

[29] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 15012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[30] P.R. Matli, F. Ubaid, R.A. Shakoor, G. Parande, V. Manakari, M. Yusuf, A.M. Amer Mohamed, M. Gupta, Improved properties of Al-Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process, RSC Adv. 7 (2017) 34401–34410.

DOI: 10.1039/c7ra04148a

Google Scholar

[31] M.A. Haque, M.T. A Saif, Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension, Scr. Mater. 47 (2002) 863–867.

DOI: 10.1016/S1359-6462(02)00306-8

Google Scholar

[32] Q. Zeng, L. Wang, W. Jiang, Molecular dynamics simulations of the tensile mechanical responses of selective laser-melted aluminum with different crystalline forms, Crystals. 11 (2021).

DOI: 10.3390/cryst11111388

Google Scholar

[33] M.E. Suk, Effect of the nanotube radius and the volume fraction on the mechanical properties of carbon nanotube-reinforced aluminum metal matrix composites, Molecules. 26 (2021).

DOI: 10.3390/molecules26133947

Google Scholar

[34] M. Taoufiki, H. Chabba, A. Barroug, A. Jouaiti, D. Dafir, Atomic-scale compression and tensile investigations for crystalline Aluminum using EAM and MEAM potentials, Moroccan J. Chem. 10 (2022) 362–374.

Google Scholar

[35] H. Chabba, M. Lemaalem, A. Derouiche, D. Dafir, Modeling aluminum using molecular dynamics simulation, J. Mater. Environ. Sci. 9 (2018) 93–99.

DOI: 10.26872/jmes.2018.9.1.11

Google Scholar