[1]
H.Yang, P. Cui, Z. Fang, Vertical-borehole ground-coupled heat pumps: a review of models and systems, Appl. Energy, 7(1) (2010) 16-27.
DOI: 10.1016/j.apenergy.2009.04.038
Google Scholar
[2]
H. Javadi, S.S.M. Ajarostaghi, M.A. Rosen, M. Pourfallah, Performance of ground heat exchangers: a comprehensive review of recent advances, Energy. 178 (2019) 207-233.
DOI: 10.1016/j.energy.2019.04.094
Google Scholar
[3]
C. Alimonti, E. Soldo, D. Bocchetti, D. Berardi, The wellbore heat exchangers: a technical review, Renew. Energy. 123 (2018) 353-381.
DOI: 10.1016/j.renene.2018.02.055
Google Scholar
[4]
C. Wang, Y. Lu, L. Chen, Z. Huang, H. Fang, A semi-analytical model for heat transfer in coaxial borehole heat exchangers, Geothermics. 89 (2021) 101952.
DOI: 10.1016/j.geothermics.2020.101952
Google Scholar
[5]
X. Hu, J. Banks, Y. Guo, G. Huang, W.V. Liu, Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger, Renew. Energy. 165 (2021) 334-349.
DOI: 10.1016/j.renene.2020.11.020
Google Scholar
[6]
Y. Luo, H. Guo, F. Meggers, L. Zhang, Deep coaxial borehole heat exchanger: analytical modeling and thermal analysis, Energy. 85 (2019) 1298-1313.
DOI: 10.1016/j.energy.2019.05.228
Google Scholar
[7]
X. Huang, Z. Yao, H. Cai, W. Xue, and X. Wang, An analytical heat-transfer model for coaxial borehole heat exchanger with segmented method, Energy sources, part a: recovery, utilization, and environmental effects, Taylor & Francis Group, LLC (2020).
DOI: 10.1080/15567036.2020.1851821
Google Scholar
[8]
J. Li, W. Xu, J. Li, S. Huang, Z. Li, B. Qiao. Heat extraction model and characteristics of coaxial deep borehole heat exchanger, Renew. Energy. 169 (2021) 738-751.
DOI: 10.1016/j.renene.2021.01.036
Google Scholar
[9]
W. Cai, F. Wang, J. Jiang, Z. Wang, J. Liu and C. Chen, Long-term Performance Evaluation and Economic Analysis for Deep Borehole Heat Exchanger Heating System in Weihe Basin. Front. Earth. Sci. 10 (2022) 806416.
DOI: 10.3389/feart.2022.806416
Google Scholar
[10]
G.N. Molina, P. Blum, K. Zhu, P. Bayer, Z. Fang, A moving finite line source model to simulate borehole heat exchangers with groundwater advection, Int. J. Therm. Sci. 50(12) (2011) 6-13.
DOI: 10.1016/j.ijthermalsci.2011.06.012
Google Scholar
[11]
S. Erol, F. Bertrand, Multilayer analytical model for vertical ground heat exchanger with groundwater flow, Geothermics. 71 (2018) 294-305.
DOI: 10.1016/j.geothermics.2017.09.008
Google Scholar
[12]
A. Pan, L. Lu, P. Cui, L. Jia, A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes, Int. J. Heat Mass Transf. 141 (2019) 1056-1065.
DOI: 10.1016/j.ijheatmasstransfer.2019.07.041
Google Scholar
[13]
N.R. Diao, Z.H. Fang. Ground-coupled heat pump technology, Beijing: Higher Education Press (2006), 47-68.
Google Scholar
[14]
D. Gordon, T. Bolisetti, D.S.K. Ting, S. Reitsma, Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger, Renew. Energy. 115 (2018) 946-953.
DOI: 10.1016/j.renene.2017.08.088
Google Scholar
[15]
D. Gordon, T. Bolisetti, S.K. Ting, S. Reitsma, A physical and semi-analytical comparison between coaxial BHE designs considering various piping materials, Energy. 141(2018) 1610-1621.
DOI: 10.1016/j.energy.2017.11.001
Google Scholar
[16]
L. Ma, Y.Z. Zhao, H.M. Yin, J. Zhao, A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution, Energy Convers Manag. 204 (2020) 112308.
DOI: 10.1016/j.enconman.2019.112308
Google Scholar
[17]
S.J. Rees, M. He, A three-dimensional numerical model of borehole heat exchanger heat transfer and fluid flow, Geothermics. 46 (2013) 1-13.
DOI: 10.1016/j.geothermics.2012.10.004
Google Scholar
[18]
C. Zhang, P. Chen, Y. Liu, S. Sun, D. Peng, An improved evaluation method for thermal performance of borehole heat exchanger, Renew. Energy. 77 (2015) 142-51.
DOI: 10.1016/j.renene.2014.12.015
Google Scholar
[19]
Y. Zhao, Z. Pang, Y. Huang, and Z. Ma, An efficient hybrid model for thermal analysis of deep borehole heat exchangers, Geotherm. Energy. 8 (2020) 18.
DOI: 10.1186/s40517-020-00170-z
Google Scholar
[20]
K. Morita, W.S. Bollmeier, H. Mizogami, Analysis of the results from the Downhole Coaxial Heat Exchanger (DCHE) experiment in Hawaii, Geotherm. Resour. Counc. Trans. 16 (1992) 17-23.
Google Scholar
[21]
L. Fang, N. Diao, Z. Shao, K. Zhu, Z. Fang, A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energy Build. 167 (2018) 79-88.
DOI: 10.1016/j.enbuild.2018.02.013
Google Scholar
[22]
M.S. Saadi, R. Gomri, Investigation of dynamic heat transfer process through coaxial heat exchangers in the ground, Int. J. Hydrog. Energy. 42(28) (2017) 18014-18027.
DOI: 10.1016/j.ijhydene.2017.03.106
Google Scholar
[23]
C. Chen, H. Shao, D. Naumov, Y. Kong, K. Tu, O. Kolditz, Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Geotherm. Energy. 7(1) (2019) 1-26.
DOI: 10.1186/s40517-019-0133-8
Google Scholar
[24]
V. Gerlich, K. Sulovská, and M. Zálešák, COMSOL Multiphysics validation as simulation software for heat transfer calculation in buildings: Building simulation software validation. Measurement. 6 (6) (2013) 3-12.
DOI: 10.1016/j.measurement.2013.02.020
Google Scholar
[25]
E. Zanchini, S. Lazzari, A. Priarone, Improving the thermal performance of coaxial borehole heat exchangers, Energy. 35(2) (2010) 657-666.
DOI: 10.1016/j.energy.2009.10.038
Google Scholar
[26]
X. Song, G. Wang, Y. Shi, R. Li, Z. Xu, R. Zheng, Y. Wang, J. Li, Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system, Energy. 164 (2018) 1298-1310.
DOI: 10.1016/j.energy.2018.08.056
Google Scholar
[27]
Y. Zhang, C. Yu, G. Li, X. Guo, G. Wang, Y. Shi, Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids, Appl. Therm. Eng. 163 (2019) 114317.
DOI: 10.1016/j.applthermaleng.2019.114317
Google Scholar
[28]
X. Hu, J. Banks, L. Wu, and W.V. Liu, Numerical Modeling of a Coaxial Borehole Heat Exchanger to Exploit Geothermal Energy from Abandoned Petroleum wells in Hinton, Alberta. Renew. Energ. 148 (2020) 1110–1123.
DOI: 10.1016/j.renene.2019.09.141
Google Scholar
[29]
P. Congedo, G. Colangelo, and G. Starace, CFD simulations of horizontal ground heat exchangers: A comparison among different configurations, Appl. Therm.Eng. 33(2012) 24-32.
DOI: 10.1016/j.applthermaleng.2011.09.005
Google Scholar
[30]
Z. Wang, F. Wang, J. Liu, Z. Ma, E. Han, M. Song, Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system, Energy Convers. Manag. 153 (2017) 603-615.
DOI: 10.1016/j.enconman.2017.10.038
Google Scholar
[31]
C. Li, Y. Guan, J. Liu, C. Jiang, R. Yang, and X. Hou. Heat Transfer Performance of a Deep Ground Heat Exchanger for Building Heating in Long-Term Service, Renew. Energ. 166 (2020) 20-34.
DOI: 10.1016/j.renene.2020.11.111
Google Scholar
[32]
Y. Fujimitsu, K. Fukuoka, S. Ehara, H. Takeshita, F. Abe, Evaluation of subsurface thermal environmental change caused by a ground-coupled heat pump system, Curr. Appl. Phys. 10(2) (2010) 113-116.
DOI: 10.1016/j.cap.2009.11.014
Google Scholar
[33]
K. Bär, W. Rühaak, B. Welsch, D. Schulte, S. Homuth, and I. Sass, Seasonal high temperature heat storage with medium deep borehole heat exchangers, Energy Procedia. 76 (2015) 351-360.
DOI: 10.1016/j.egypro.2015.07.841
Google Scholar
[34]
M.L. Lous, F. Larroque, A. Dupuy, A. Moignard, Thermal performance of a deep borehole heat exchanger: insights from a synthetic coupled heat and flow model, Geothermics. 57 (2015) 157-172.
DOI: 10.1016/j.geothermics.2015.06.014
Google Scholar
[35]
B. Welsch, W. Rühaak, D. O. Schulte, K. Baer, and I. Sass, Characteristics of medium deep borehole thermal energy storage. Int. J. Energy Res. 40(13) (2016) 1855-1868.
DOI: 10.1002/er.3570
Google Scholar
[36]
M. He, Numerical Modelling of Geothermal Borehole Heat Exchanger Systems, Ph.D Thesis, De Montfort University (2017).
Google Scholar
[37]
G. Falcone, X. Liu, R. Okech. Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions, Energy. 160 (2018) 54-63.
DOI: 10.1016/j.energy.2018.06.144
Google Scholar
[38]
J. Acuña, B. Palm, First experiences with coaxial borehole heat exchangers, Proceedings of the IIR Conference on Sources/Sinks alternative to the outside Air for HPs and AC techniques, (2011).
Google Scholar
[39]
K. Oh, S. Lee, S. Park, S.I. Han, H. Choi. Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions. Renew. Energy. 144 (2017) 84-96.
DOI: 10.1016/j.renene.2018.10.078
Google Scholar
[40]
C.S. Brown, N.J. Cassidy, S. Egan, D. Griffiths, Numerical modelling of deep coaxial borehole heat exchangers in the Cheshire Basin, UK, Comput. Geosci. 152 (2021) 104752.
DOI: 10.1016/j.cageo.2021.104752
Google Scholar
[41]
M. Daneshipour, R. Rafee, Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. Int. Commun. Heat Mass Transf. 81 (2017) 34-41.
DOI: 10.1016/j.icheatmasstransfer.2016.12.002
Google Scholar
[42]
P.J. Yekoladio, T. Bello-Ochende, J.P. Meyer. Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). Renew. Energy. 55 (2013) 128-137.
DOI: 10.1016/j.renene.2012.11.035
Google Scholar
[43]
H. Holmberg, J. Acuña, E. Næss, and O. K. Sønju. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. energy. 97 (2016) 65-76.
DOI: 10.1016/j.renene.2016.05.048
Google Scholar
[44]
H. Mokhtari, H. Hadiannasab, M. Mostafavi, A. Ahmadibeni, and B. Shahriari, Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger, Energy. 102 (2016) 260-275.
DOI: 10.1016/j.energy.2016.02.067
Google Scholar
[45]
L. Dijkshoorn, S. Speer, R. Pechnig, Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. Int. J. Geophys. (2013) ID 916541.
DOI: 10.1155/2013/916541
Google Scholar
[46]
T. Sliwa, and M.A. Rosen, Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations, Geothermics. 69 (2017) 132-138.
DOI: 10.1016/j.geothermics.2017.05.004
Google Scholar
[47]
S. Iry, and R. Rafee, Transient numerical simulation of the coaxial borehole heat exchanger with the different diameters ratio, Geothermics. 77 (2019) 158-165.
DOI: 10.1016/j.geothermics.2018.09.009
Google Scholar
[48]
A. El Jery, A.K. Khudhair, S.Q. Abbas, A.M. Abed and K.M. Khedher, Numerical simulation and artificial neural network prediction of hydrodynamic and heat transfer in a geothermal heat exchanger to obtain the optimal diameter of tubes with the lowest entropy using water andAl2O3/water nanofluid, Geothermics. 107 (2023) 102605.
DOI: 10.1016/j.geothermics.2022.102605
Google Scholar
[49]
C. Yavuzurk, J. Spitler, S. Rees. A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchanger, ASHRAE Trans. 105 (1999) 462-474.
Google Scholar
[50]
M. Benyoub, B. Aour, B. Bouhacina, K. Sadek, Numerical Investigation of the Physical Properties Effect on the Thermal Performance of a Vertical Geothermal Heat Exchanger, Eng. Technol. Appl. Sci. Res. 8(2) (2018) 2715-2723.
DOI: 10.48084/etasr.1827
Google Scholar
[51]
B. Bouhacina, R. Saim, H. Benzenine, H.F. Oztop, Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger, Energy Build. 58 (2013) 37-43.
DOI: 10.1016/j.enbuild.2012.11.037
Google Scholar
[52]
E.J. Kim, J. Roux, G. Rusaouen, F. Kuznik. Numerical modelling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique, Appl. Therm. Eng. 30(6-7) (2010) 706-714.
DOI: 10.1016/j.applthermaleng.2009.11.019
Google Scholar
[53]
A. Jalaluddin and Miyara, Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode, Appl. Therm. Eng. 33-34 (2012) 167-174.
DOI: 10.1016/j.applthermaleng.2011.09.030
Google Scholar
[54]
R. Al-Khoury, S. Focaccia, A spectral model for transient heat flow in a double U-tube geothermal heat pump system, Renew. Energ. 85 (2016) 195-205.
DOI: 10.1016/j.renene.2015.06.031
Google Scholar
[55]
T.Y. Ozudogru, C.G. Olgun, A. Senol, 3D numerical modeling of vertical geothermal heat exchangers, Geothermics. 51 (2014) 312-324.
DOI: 10.1016/j.geothermics.2014.02.005
Google Scholar
[56]
S.K. Chang, M.J. Kim, Thermal performance evaluation of vertical U-loop ground heat exchanger using in-situ thermal response test, Renew. Energ. 87 (2016) 585-591.
DOI: 10.1016/j.renene.2015.10.059
Google Scholar
[57]
T.Y. Ozudogru, O. Ghasemi-Fare, C.G. Olgun, P. Basu, Numerical modeling of verticalgeothermal heat exchanger using finite difference and finite element techniques, Geotech. Geol. Eng. 33 (2015) 291-306.
DOI: 10.1007/s10706-014-9822-z
Google Scholar
[58]
B. Bezyan, S. Porkhial, A. Aboui, Mehrizi, 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration, App. Therm. Eng. 87 (2015) 655-668.
DOI: 10.1016/j.applthermaleng.2015.05.051
Google Scholar
[59]
L. Zhongjian, A new constant heat flux model for vertical U-tube ground heat exchangers, Energy Build. 45 (2012) 311-316.
DOI: 10.1016/j.enbuild.2011.11.026
Google Scholar
[60]
A.M. Gustafsson, L. Westerlund, G. Hellström, CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger, App. Therm. Eng. 30 (2010) 683-691.
DOI: 10.1016/j.applthermaleng.2009.11.016
Google Scholar