Numerical Investigation of the Coaxial Geothermal Heat Exchanger Performance

Article Preview

Abstract:

Space heating and cooling using geothermal heat exchangers is a promising environmentally friendly green energy solution. Modeling these energy storage systems is crucial for optimizing their design and operation. In this context, the present study consists of numerically investigating the effects of various physical properties, including thermal conductivity, density, and specific heat capacity of each material, as well as flow velocity, on the process of heat transfer in vertical geothermal heat exchangers using coaxial pipes to optimize their energy performance. Numerical simulations were carried out using Gambit-Fluent software. Different materials that make up the coaxial heat exchanger structure studied were tested to highlight their effects on the progress of heat flux and temperature. Thermal and fluid mechanics aspects were also studied. At the end of this study, a comparative analysis was carried out using the U-tube geothermal heat exchanger. The results indicate that the heat exchanger using a coaxial tube demonstrates superior thermal efficiency compared to the U-tube configuration. It has been found that using a low velocity with an appropriate selection of tube, grout, and soil materials results in enhanced dynamic exchanges, thereby enhancing the thermal efficiency of the geothermal exchanger.

You might also be interested in these eBooks

Info:

Pages:

71-90

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.Yang, P. Cui, Z. Fang, Vertical-borehole ground-coupled heat pumps: a review of models and systems, Appl. Energy, 7(1) (2010) 16-27.

DOI: 10.1016/j.apenergy.2009.04.038

Google Scholar

[2] H. Javadi, S.S.M. Ajarostaghi, M.A. Rosen, M. Pourfallah, Performance of ground heat exchangers: a comprehensive review of recent advances, Energy. 178 (2019) 207-233.

DOI: 10.1016/j.energy.2019.04.094

Google Scholar

[3] C. Alimonti, E. Soldo, D. Bocchetti, D. Berardi, The wellbore heat exchangers: a technical review, Renew. Energy. 123 (2018) 353-381.

DOI: 10.1016/j.renene.2018.02.055

Google Scholar

[4] C. Wang, Y. Lu, L. Chen, Z. Huang, H. Fang, A semi-analytical model for heat transfer in coaxial borehole heat exchangers, Geothermics. 89 (2021) 101952.

DOI: 10.1016/j.geothermics.2020.101952

Google Scholar

[5] X. Hu, J. Banks, Y. Guo, G. Huang, W.V. Liu, Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger, Renew. Energy. 165 (2021) 334-349.

DOI: 10.1016/j.renene.2020.11.020

Google Scholar

[6] Y. Luo, H. Guo, F. Meggers, L. Zhang, Deep coaxial borehole heat exchanger: analytical modeling and thermal analysis, Energy. 85 (2019) 1298-1313.

DOI: 10.1016/j.energy.2019.05.228

Google Scholar

[7] X. Huang, Z. Yao, H. Cai, W. Xue, and X. Wang, An analytical heat-transfer model for coaxial borehole heat exchanger with segmented method, Energy sources, part a: recovery, utilization, and environmental effects, Taylor & Francis Group, LLC (2020).

DOI: 10.1080/15567036.2020.1851821

Google Scholar

[8] J. Li, W. Xu, J. Li, S. Huang, Z. Li, B. Qiao. Heat extraction model and characteristics of coaxial deep borehole heat exchanger, Renew. Energy. 169 (2021) 738-751.

DOI: 10.1016/j.renene.2021.01.036

Google Scholar

[9] W. Cai, F. Wang, J. Jiang, Z. Wang, J. Liu and C. Chen, Long-term Performance Evaluation and Economic Analysis for Deep Borehole Heat Exchanger Heating System in Weihe Basin. Front. Earth. Sci. 10 (2022) 806416.

DOI: 10.3389/feart.2022.806416

Google Scholar

[10] G.N. Molina, P. Blum, K. Zhu, P. Bayer, Z. Fang, A moving finite line source model to simulate borehole heat exchangers with groundwater advection, Int. J. Therm. Sci. 50(12) (2011) 6-13.

DOI: 10.1016/j.ijthermalsci.2011.06.012

Google Scholar

[11] S. Erol, F. Bertrand, Multilayer analytical model for vertical ground heat exchanger with groundwater flow, Geothermics. 71 (2018) 294-305.

DOI: 10.1016/j.geothermics.2017.09.008

Google Scholar

[12] A. Pan, L. Lu, P. Cui, L. Jia, A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes, Int. J. Heat Mass Transf. 141 (2019) 1056-1065.

DOI: 10.1016/j.ijheatmasstransfer.2019.07.041

Google Scholar

[13] N.R. Diao, Z.H. Fang. Ground-coupled heat pump technology, Beijing: Higher Education Press (2006), 47-68.

Google Scholar

[14] D. Gordon, T. Bolisetti, D.S.K. Ting, S. Reitsma, Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger, Renew. Energy. 115 (2018) 946-953.

DOI: 10.1016/j.renene.2017.08.088

Google Scholar

[15] D. Gordon, T. Bolisetti, S.K. Ting, S. Reitsma, A physical and semi-analytical comparison between coaxial BHE designs considering various piping materials, Energy. 141(2018) 1610-1621.

DOI: 10.1016/j.energy.2017.11.001

Google Scholar

[16] L. Ma, Y.Z. Zhao, H.M. Yin, J. Zhao, A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution, Energy Convers Manag. 204 (2020) 112308.

DOI: 10.1016/j.enconman.2019.112308

Google Scholar

[17] S.J. Rees, M. He, A three-dimensional numerical model of borehole heat exchanger heat transfer and fluid flow, Geothermics. 46 (2013) 1-13.

DOI: 10.1016/j.geothermics.2012.10.004

Google Scholar

[18] C. Zhang, P. Chen, Y. Liu, S. Sun, D. Peng, An improved evaluation method for thermal performance of borehole heat exchanger, Renew. Energy. 77 (2015) 142-51.

DOI: 10.1016/j.renene.2014.12.015

Google Scholar

[19] Y. Zhao, Z. Pang, Y. Huang, and Z. Ma, An efficient hybrid model for thermal analysis of deep borehole heat exchangers, Geotherm. Energy. 8 (2020) 18.

DOI: 10.1186/s40517-020-00170-z

Google Scholar

[20] K. Morita, W.S. Bollmeier, H. Mizogami, Analysis of the results from the Downhole Coaxial Heat Exchanger (DCHE) experiment in Hawaii, Geotherm. Resour. Counc. Trans. 16 (1992) 17-23.

Google Scholar

[21] L. Fang, N. Diao, Z. Shao, K. Zhu, Z. Fang, A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energy Build. 167 (2018) 79-88.

DOI: 10.1016/j.enbuild.2018.02.013

Google Scholar

[22] M.S. Saadi, R. Gomri, Investigation of dynamic heat transfer process through coaxial heat exchangers in the ground, Int. J. Hydrog. Energy. 42(28) (2017) 18014-18027.

DOI: 10.1016/j.ijhydene.2017.03.106

Google Scholar

[23] C. Chen, H. Shao, D. Naumov, Y. Kong, K. Tu, O. Kolditz, Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Geotherm. Energy. 7(1) (2019) 1-26.

DOI: 10.1186/s40517-019-0133-8

Google Scholar

[24] V. Gerlich, K. Sulovská, and M. Zálešák, COMSOL Multiphysics validation as simulation software for heat transfer calculation in buildings: Building simulation software validation. Measurement. 6 (6) (2013) 3-12.

DOI: 10.1016/j.measurement.2013.02.020

Google Scholar

[25] E. Zanchini, S. Lazzari, A. Priarone, Improving the thermal performance of coaxial borehole heat exchangers, Energy. 35(2) (2010) 657-666.

DOI: 10.1016/j.energy.2009.10.038

Google Scholar

[26] X. Song, G. Wang, Y. Shi, R. Li, Z. Xu, R. Zheng, Y. Wang, J. Li, Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system, Energy. 164 (2018) 1298-1310.

DOI: 10.1016/j.energy.2018.08.056

Google Scholar

[27] Y. Zhang, C. Yu, G. Li, X. Guo, G. Wang, Y. Shi, Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids, Appl. Therm. Eng. 163 (2019) 114317.

DOI: 10.1016/j.applthermaleng.2019.114317

Google Scholar

[28] X. Hu, J. Banks, L. Wu, and W.V. Liu, Numerical Modeling of a Coaxial Borehole Heat Exchanger to Exploit Geothermal Energy from Abandoned Petroleum wells in Hinton, Alberta. Renew. Energ. 148 (2020) 1110–1123.

DOI: 10.1016/j.renene.2019.09.141

Google Scholar

[29] P. Congedo, G. Colangelo, and G. Starace, CFD simulations of horizontal ground heat exchangers: A comparison among different configurations, Appl. Therm.Eng. 33(2012) 24-32.

DOI: 10.1016/j.applthermaleng.2011.09.005

Google Scholar

[30] Z. Wang, F. Wang, J. Liu, Z. Ma, E. Han, M. Song, Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system, Energy Convers. Manag. 153 (2017) 603-615.

DOI: 10.1016/j.enconman.2017.10.038

Google Scholar

[31] C. Li, Y. Guan, J. Liu, C. Jiang, R. Yang, and X. Hou. Heat Transfer Performance of a Deep Ground Heat Exchanger for Building Heating in Long-Term Service, Renew. Energ. 166 (2020) 20-34.

DOI: 10.1016/j.renene.2020.11.111

Google Scholar

[32] Y. Fujimitsu, K. Fukuoka, S. Ehara, H. Takeshita, F. Abe, Evaluation of subsurface thermal environmental change caused by a ground-coupled heat pump system, Curr. Appl. Phys. 10(2) (2010) 113-116.

DOI: 10.1016/j.cap.2009.11.014

Google Scholar

[33] K. Bär, W. Rühaak, B. Welsch, D. Schulte, S. Homuth, and I. Sass, Seasonal high temperature heat storage with medium deep borehole heat exchangers, Energy Procedia. 76 (2015) 351-360.

DOI: 10.1016/j.egypro.2015.07.841

Google Scholar

[34] M.L. Lous, F. Larroque, A. Dupuy, A. Moignard, Thermal performance of a deep borehole heat exchanger: insights from a synthetic coupled heat and flow model, Geothermics. 57 (2015) 157-172.

DOI: 10.1016/j.geothermics.2015.06.014

Google Scholar

[35] B. Welsch, W. Rühaak, D. O. Schulte, K. Baer, and I. Sass, Characteristics of medium deep borehole thermal energy storage. Int. J. Energy Res. 40(13) (2016) 1855-1868.

DOI: 10.1002/er.3570

Google Scholar

[36] M. He, Numerical Modelling of Geothermal Borehole Heat Exchanger Systems, Ph.D Thesis, De Montfort University (2017).

Google Scholar

[37] G. Falcone, X. Liu, R. Okech. Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions, Energy. 160 (2018) 54-63.

DOI: 10.1016/j.energy.2018.06.144

Google Scholar

[38] J. Acuña, B. Palm, First experiences with coaxial borehole heat exchangers, Proceedings of the IIR Conference on Sources/Sinks alternative to the outside Air for HPs and AC techniques, (2011).

Google Scholar

[39] K. Oh, S. Lee, S. Park, S.I. Han, H. Choi. Field experiment on heat exchange performance of various coaxial-type ground heat exchangers considering construction conditions. Renew. Energy. 144 (2017) 84-96.

DOI: 10.1016/j.renene.2018.10.078

Google Scholar

[40] C.S. Brown, N.J. Cassidy, S. Egan, D. Griffiths, Numerical modelling of deep coaxial borehole heat exchangers in the Cheshire Basin, UK, Comput. Geosci. 152 (2021) 104752.

DOI: 10.1016/j.cageo.2021.104752

Google Scholar

[41] M. Daneshipour, R. Rafee, Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. Int. Commun. Heat Mass Transf. 81 (2017) 34-41.

DOI: 10.1016/j.icheatmasstransfer.2016.12.002

Google Scholar

[42] P.J. Yekoladio, T. Bello-Ochende, J.P. Meyer. Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). Renew. Energy. 55 (2013) 128-137.

DOI: 10.1016/j.renene.2012.11.035

Google Scholar

[43] H. Holmberg, J. Acuña, E. Næss, and O. K. Sønju. Thermal evaluation of coaxial deep borehole heat exchangers. Renew. energy. 97 (2016) 65-76.

DOI: 10.1016/j.renene.2016.05.048

Google Scholar

[44] H. Mokhtari, H. Hadiannasab, M. Mostafavi, A. Ahmadibeni, and B. Shahriari, Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger, Energy. 102 (2016) 260-275.

DOI: 10.1016/j.energy.2016.02.067

Google Scholar

[45] L. Dijkshoorn, S. Speer, R. Pechnig, Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. Int. J. Geophys. (2013) ID 916541.

DOI: 10.1155/2013/916541

Google Scholar

[46] T. Sliwa, and M.A. Rosen, Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations, Geothermics. 69 (2017) 132-138.

DOI: 10.1016/j.geothermics.2017.05.004

Google Scholar

[47] S. Iry, and R. Rafee, Transient numerical simulation of the coaxial borehole heat exchanger with the different diameters ratio, Geothermics. 77 (2019) 158-165.

DOI: 10.1016/j.geothermics.2018.09.009

Google Scholar

[48] A. El Jery, A.K. Khudhair, S.Q. Abbas, A.M. Abed and K.M. Khedher, Numerical simulation and artificial neural network prediction of hydrodynamic and heat transfer in a geothermal heat exchanger to obtain the optimal diameter of tubes with the lowest entropy using water andAl2O3/water nanofluid, Geothermics. 107 (2023) 102605.

DOI: 10.1016/j.geothermics.2022.102605

Google Scholar

[49] C. Yavuzurk, J. Spitler, S. Rees. A transient two-dimensional finite volume model for the simulation of vertical u-tube ground heat exchanger, ASHRAE Trans. 105 (1999) 462-474.

Google Scholar

[50] M. Benyoub, B. Aour, B. Bouhacina, K. Sadek, Numerical Investigation of the Physical Properties Effect on the Thermal Performance of a Vertical Geothermal Heat Exchanger, Eng. Technol. Appl. Sci. Res. 8(2) (2018) 2715-2723.

DOI: 10.48084/etasr.1827

Google Scholar

[51] B. Bouhacina, R. Saim, H. Benzenine, H.F. Oztop, Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger, Energy Build. 58 (2013) 37-43.

DOI: 10.1016/j.enbuild.2012.11.037

Google Scholar

[52] E.J. Kim, J. Roux, G. Rusaouen, F. Kuznik. Numerical modelling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique, Appl. Therm. Eng. 30(6-7) (2010) 706-714.

DOI: 10.1016/j.applthermaleng.2009.11.019

Google Scholar

[53] A. Jalaluddin and Miyara, Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode, Appl. Therm. Eng. 33-34 (2012) 167-174.

DOI: 10.1016/j.applthermaleng.2011.09.030

Google Scholar

[54] R. Al-Khoury, S. Focaccia, A spectral model for transient heat flow in a double U-tube geothermal heat pump system, Renew. Energ. 85 (2016) 195-205.

DOI: 10.1016/j.renene.2015.06.031

Google Scholar

[55] T.Y. Ozudogru, C.G. Olgun, A. Senol, 3D numerical modeling of vertical geothermal heat exchangers, Geothermics. 51 (2014) 312-324.

DOI: 10.1016/j.geothermics.2014.02.005

Google Scholar

[56] S.K. Chang, M.J. Kim, Thermal performance evaluation of vertical U-loop ground heat exchanger using in-situ thermal response test, Renew. Energ. 87 (2016) 585-591.

DOI: 10.1016/j.renene.2015.10.059

Google Scholar

[57] T.Y. Ozudogru, O. Ghasemi-Fare, C.G. Olgun, P. Basu, Numerical modeling of verticalgeothermal heat exchanger using finite difference and finite element techniques, Geotech. Geol. Eng. 33 (2015) 291-306.

DOI: 10.1007/s10706-014-9822-z

Google Scholar

[58] B. Bezyan, S. Porkhial, A. Aboui, Mehrizi, 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration, App. Therm. Eng. 87 (2015) 655-668.

DOI: 10.1016/j.applthermaleng.2015.05.051

Google Scholar

[59] L. Zhongjian, A new constant heat flux model for vertical U-tube ground heat exchangers, Energy Build. 45 (2012) 311-316.

DOI: 10.1016/j.enbuild.2011.11.026

Google Scholar

[60] A.M. Gustafsson, L. Westerlund, G. Hellström, CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger, App. Therm. Eng. 30 (2010) 683-691.

DOI: 10.1016/j.applthermaleng.2009.11.016

Google Scholar