Comparisons of Direct Normal Irradiation for the Optimization of Active Daylighting Systems

Article Preview

Abstract:

Active daylighting technology, encompassing techniques for utilizing natural light without converting it into heat or electrical energy, proves highly beneficial in sun-rich countries like Morocco. Unlike solar technologies, which capture global radiation, daylighting technology specifically leverages direct sun radiation. This study focuses on three semi-empirical models: Perrin de Brichambaut, Kasten, and Ghouard, utilizing data from the PVGIS website to develop and evaluate these systems. Comparison of experimentally obtained direct normal irradiation results against these models and the PVGIS website identifies the Kasten model as the most suitable choice, supported by the high R2 values of 0.9954, 0.9933, 0.9951, and 0.9906 for winter, spring, summer, and autumn, respectively. Furthermore, the model exhibits a minimum Mean Absolute Error (MAE) of 12.34, 24.29, 25.93, and 29.51 W/m², an optimal Mean Squared Error (MSE) of 238.16, 1129.5, 1039.9, and 1520.7 W²/m⁴, and a variance of 216.40, 1099.3, 1015.4, and 1460 for the respective seasons. These results strongly indicate the Kasten model's suitability for the climatic conditions of the studied site in Morocco, showcasing high correlation coefficients and low prediction errors. The findings underscore the Kasten model as the most fitting choice for optimizing active daylighting technology in Morocco's climate.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] R. Sindhwani, P.L. Singh, A. Behl, S. Afridi Mohd, D. Sammanit, A.K. Tiwari, Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation. Technol. Forecast. Soc. Change., 181 (2022) 121759.

DOI: 10.1016/j.techfore.2022.121759

Google Scholar

[2] A. O. M. Maka, J. M. Alabid, Solar energy technology and its roles in sustainable development. Clean Energy, 6 (2022) 476–483.

DOI: 10.1093/ce/zkac023

Google Scholar

[3] A. Maftouh, O. El Fatni, S. Bouzekri, F. Rajabi, M. Sillanpää, M.H. Butt, Economic feasibility of solar-powered reverse osmosis water desalination: a comparative systemic review. Environ. Sci. Pollut. Res., 30 (2023) 2341-2354.

DOI: 10.1007/s11356-022-24116-z

Google Scholar

[4] M. Taoufik, M. Laghlimi, A. Fekri, Land suitability analysis for solar farms exploitation using the gis and analytic hierarchy process (AHP) – a case study of Morocco. Polityka Energetyczna, 24 (2021) 79–96.

DOI: 10.33223/epj/133474

Google Scholar

[5] K. Adeli, M. Nachtane, A. Faik, D. Saifaoui, A. Boulezhar, How Green Hydrogen and Ammonia Are Revolutionizing the Future of Energy Production: A Comprehensive Review of the Latest Developments and Future Prospects. Appl. Sci., 13 (2023) 8711.

DOI: 10.3390/app13158711

Google Scholar

[6] S. Oubenmoh, A. Allouhi, E.H. Sebbar, R. Saadani, A. Jamil, A. Ait Mssad, M. Rahmoune, M. Bentaleb, Energy assessment and economic study of solar floor heating system in different climates in Morocco. J. Sol. Energy Eng., 145 (2022) 011005.

DOI: 10.1115/1.4054709

Google Scholar

[7] A. Maftouh, O. El Fatni, A. Echchikhi, T. Bahaj, K. Gueraoui, H. El Rhaleb, Effect of Feed Water Temperature on Reverse Osmosis Performance in a Borehole Water Desalination Plant: Numerical and Experimental Validation. Int. J. Eng. Appl. (IREA), 10 (2022) 252-264.

DOI: 10.15866/irea.v10i4.21290

Google Scholar

[8] N.T. Al-Ashwal, A.S. Hassan, The integration of daylighting with artificial lighting to enhance building energy performance. AIP Conf. Proc., 1892 (2017) 160010.

DOI: 10.1063/1.5005777

Google Scholar

[9] M.R. Nugraha, A. Adriansyah, Development of a solar radiation sensor system with pyranometer. Int. J. Electr. Comput. Eng., 12 (2022) 1385–1391.

Google Scholar

[10] S.S. Priya, N.C. Freudenberg, A. Borkataky, Solar radiation measurement using raspberry pi and its modelling using artificial neural networks, in: MATEC Web of Conferences, EDP Sciences, 77 (2016) 06011.

DOI: 10.1051/matecconf/20167706011

Google Scholar

[11] A. Maftouh, O. El Fatni, A. Echchikhi, H. El Rhaleb, Experimental and Mathematical Modelling of Reverse Osmosis System to Investigate the Impact of Feed Water Pressure: a Case Study, Int. Rev. Civ. Eng. (IRECE), 14 (2023) 42-55.

DOI: 10.15866/irece.v14i1.21621

Google Scholar

[12] S.J. Oh, S. Dutton, S. Selkowitz, H.J. Han, Application of a coelostat daylighting system for energy savings and enhancement of indoor illumination: a case study under clear-sky conditions. Energy Build., 156 (2017) 173–186.

DOI: 10.1016/j.enbuild.2017.08.081

Google Scholar

[13] A. Balabel, M. Alwetaishi, A. Abdelhafiz, U. Issa, I.A. Sharaky, A.K. Shamseldin, M. Al-Surf, M. Al-Harthi, Potential of solatube technology as passive daylight systems for sustainable buildings in Saudi Arabia. Alex. Eng. J., 61 (2022) 339–353.

DOI: 10.1016/j.aej.2021.06.001

Google Scholar

[14] Y. El Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul, Models for obtaining the daily direct, diffuse and global solar radiations. Renew. Sustain. Energy Rev., 56 (2016) 87–99.

DOI: 10.1016/j.rser.2015.11.044

Google Scholar

[15] M. Xiao, Z. Yu, Y. Cui, Evaluation and estimation of daily global solar radiation from the estimated direct and diffuse solar radiation. Theor. Appl. Climatol., 140 (2020) 983–992.

DOI: 10.1007/s00704-020-03140-4

Google Scholar

[16] A. Domínguez-Álvarez, M.T. de-Tena-Rey, L. García-Moruno, Modelling global solar radiation to optimise agricultural production. Span. J. Agric. Res., 19 (2021) e0201–e0201.

DOI: 10.5424/sjar/2021191-16813

Google Scholar

[17] A.S. Jihad, M. Tahiri, Contribution to the study of two methods for estimating direct and diffuse solar radiation in Morocco at the Fès-Saïs site. Int. J. Civ. Eng. Technol., 10 (2019) 1664–1673.

Google Scholar

[18] M. Benchrifa, H. Essalhi, R. Tadili, H. Nfaoui, Estimation of daily direct solar radiation for Rabat, in: Sayigh, A. (eds) Sustain. Energy Dev. Innov., Innov. Renew. Energy. Springer, Cham, 2022, p.629–634.

DOI: 10.1007/978-3-030-76221-6_69

Google Scholar

[19] H. Sani Dan Nomao, M. Boukar, S. Madougou, Study of Four (4) Semi-empirical models for estimating direct radiation from the sun and modeling for application to the solar thermodynamic system. Eur. J. Appl. Sci., 10 (2022) 765–782.

DOI: 10.14738/aivp.104.12950

Google Scholar

[20] M. Ghodbane, B. Boumeddane, Estimating solar radiation according to semi-empirical approach of Perrin de Brichambaut: application on several areas with different climate in Algeria. Sahara, 4 (2016) 20–29.

DOI: 10.47238/ijeca.v1i1.12

Google Scholar

[21] Z. Kouis, Photovoltaic power potential in Cyprus and how the synergies observed in an Agrivoltaic system affect the efficiency of food and energy production (Doctoral dissertation, Hochschule Rhein-Waal) (2022).

Google Scholar

[22] M. Ayoub, A review on machine learning algorithms to predict daylighting inside buildings. Sol. Energy, 202 (2020) 249–275.

DOI: 10.1016/j.solener.2020.03.104

Google Scholar