Quantification of Bed Load Transport in the Northern Part of the Central Plateau of Morocco: Case of Wadi Skhirate

Article Preview

Abstract:

Rivers play a vital role in our ecosystems, providing fresh water, supporting rich biodiversity, and contributing to human well-being. However, in the face of climate change and intensive human activities, the sediment load in rivers can reach critical levels, presenting a complex set of challenges that require immediate action. The increased sediment load can alter aquatic habitats, clog channels, reduce reservoir storage capacity, and increase the risk of flooding. These direct threats entail high costs in terms of material and ecological damage, loss of life, and expenditure on rebuilding damaged infrastructure. The quantification of bedload in watercourses is therefore crucial for maintaining water and soil resources, safeguarding riparian communities, and preserving ecological balance. The study reports the findings of a three-year monitoring of the bed load of Skhirate Wadi, a river that drains a part of the western Moroccan Meseta. The study used the colorimetric monitoring method, which quantifies the volumes of coarse sediment that were transported by monitoring topographic variations in the riverbed and measuring the distances covered by the sediment. The study showed the sediment was found to move around seven times annually on average. However, the frequency and magnitude of floods and the size of particles affect the variation in this displacement. It also showed sediments travel an average distance ranging from 649 to 883 meters per year, and that the average specific bedload at the watershed scale is 30 m3/ Km2/ year. Relationships between flood peaks mobilized sediment volumes, and average particle distances are established and discussed. These results are fundamental to understanding of coarse sediment transfer processes in the small rivers of the central plateau. They are also essential for assessing the impact on the aquatic ecosystem, on downstream dams, and on the various existing road and hydro-agricultural infrastructures. This assessment will enable the implementation of appropriate management strategies to anticipate changes and plan the planning of the river and its watershed.

You might also be interested in these eBooks

Info:

Pages:

155-168

Citation:

Online since:

May 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Laronne, D.N. Outhet, P.A. Carling, T.J. McCabe, Scour chain employment in gravel bed rivers, catena. 22 (1994) 299-306.

DOI: 10.1016/0341-8162(94)90040-x

Google Scholar

[2] A. Recking, Variation du nombre de Shields critique avec la pente, La Houille Blanche. 2008 94 (2008) 59-63.

DOI: 10.1051/lhb:2008055

Google Scholar

[3] A. Radecki-Pawlik, P. Kubon, B. Radecki-Pawlik, K. Plesiński, Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians, Water .11(2) 272 (2019) 1-15.

DOI: 10.3390/w11020272

Google Scholar

[4] E. Meyer-Peter, R. Mueller, Formulas for bedload transport. In Proceedings of the II Congress IAHR, Stockholm, Sweden, (1948) 39–64.

Google Scholar

[5] P. E. Ashmore, Bedload transport in braided gravel bed stream models, Earth Surface Processes and Landforms. 13 (1988) 677-695.

DOI: 10.1002/esp.3290130803

Google Scholar

[6] F. Liébault, Les rivières torrentielles des montagnes drômoises : évolution contemporaine et fonctionnement géomorphologique actuel (massifs du Diois et des Baronnies), Thèse de Doctorat, Université Lumière Lyon 2, (2003), p.357.

Google Scholar

[7] L. Olinde, J.P.L. Johnson, Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream, Water Resources Research. 51 (2015) 7572– 7589.

DOI: 10.1002/2014wr016120

Google Scholar

[8] J.C. Bathurst, Measuring and modelling bed load transport in channels with coarse bed materials, in Richards, K.S. (ed.), River Channels: Environment and Process, Blackwell, Oxford, 1987, 272-294.

Google Scholar

[9] A. Monsalve, C. Segura, N. Nicole Hucke, S. Katz, A bed load transport equation based on the spatial distribution of shear stress – Oak Creek revisited, Earth Surface Dynamics. 8 (2020) 825-839.

DOI: 10.5194/esurf-8-825-2020

Google Scholar

[10] K. Bunte, S.R. Abt, J.P. Potyondy, K.W. Swingle, A comparison of coarse bedload transport measured with bedload traps and Helley-Smith samplers, Geodinamica Acta. 21 (2008)53–66.

DOI: 10.3166/ga.21.53-66

Google Scholar

[11] G. Parker, Surface-based bed load transport relation for gravel rivers, Journal of Hydraulic Research. 28 (1990) 417–436.

DOI: 10.1080/00221689009499058

Google Scholar

[12] D.W. Hubbell, W.W. Sayre, Sand transport studies with radioactive tracers, Journal of Hydraulics Division, American Society of Civil Engineers. 90, Number HY3 (1964) 39-68.

DOI: 10.1061/jyceaj.0001057

Google Scholar

[13] L.R. Leopold, W.W. Emmett, Bed load measurements, East Fork River, Wyoming, Proceedings of the National Academy of Science USA. 73 (1976) 1000-1004.

DOI: 10.1073/pnas.73.4.1000

Google Scholar

[14] R.T. Milhous, Sediment transport in a gravel-bottomed stream, Ph.D. Thesis, Oregon State University, (1973), p.247.

Google Scholar

[15] K. Ashida, T. Takahashi, T. Sawada, Sediment yield and transport on a small mountainous watershed, Bull. Disaster Prevention Research Institute, Kyoto University. 26 (1976) 119-144.

Google Scholar

[16] I. Reid, J.T. Layman, L.E. Frostick, The Continuous Measurement of Bedload Discharge, Journal of Hydraulic Research. 18 (1980) 243-249.

DOI: 10.1080/00221688009499550

Google Scholar

[17] D.G. McLean, M. Church, A re-examination of sediment transport observations in the Lower Fraser River Canada, Inland Waters Directorate Report IWD-HQ-WRB-SS-86-6. (1986).

Google Scholar

[18] R.L. Beschta, Increased bag size improves Helley-Smith bed load sampler for use in streams with high sand and organic matter transport, in: Erosion and sediment transport measurement, Proceedings of the Florence symposium IAHS, Florence. no. 133 (1981) 17–25.

Google Scholar

[19] J. Pitlick, Variability of bed load measurement, Water resources research. 24 (1988), 173–177.

DOI: 10.1029/wr024i001p00173

Google Scholar

[20] D. Vericat, M. Church, R.J. Batalla, Bed load bias: Comparison of measurements obtained using two (76 and 152 mm) Helley-Smith samplers in a gravel bed river, Water resources research. 42 (2006) 1-13.

DOI: 10.1029/2005wr004025

Google Scholar

[21] D. Nathan Bradley, G.E. Tucker, measuring gravel transport and dispersion on a mountain river using passive radio tracers, Earth Surface Processes and Landforms. 37(2012)1034-1045.

DOI: 10.1002/esp.3223

Google Scholar

[22] C.L. May, B.S. Pryor, Initial motion and bedload transport distance determined by particle tracking in a large regulated river, River Research and Applications. 30 (2014) 508-520.

DOI: 10.1002/rra.2665

Google Scholar

[23] K.H Schmidt, P. Ergenzinger, Bed load entrainment, travel lengths, step lengths, rest periods studied with passive (iron, magnetic) and active (radio) tracer techniques, Earth Surface processes and landforms. 17 (1992) 147–165.

DOI: 10.1002/esp.3290170204

Google Scholar

[24] D. Rickenmann, B.W. McArdell, Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors, Earth Surface Processes and Landforms. 32 (2007) 1362–1378.

DOI: 10.1002/esp.1478

Google Scholar

[25] J. Turowski, D. Rickenmann, Measuring the Statistics of Bed-Load Transport Using Indirect Sensors, Journal of Hydraulic Engineering. 137 (2011) 116-121.

DOI: 10.1061/(asce)hy.1943-7900.0000277

Google Scholar

[26] C.CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 1. Impulse counts and particle size identification, Water resources research. 52 (2016a) 7744 –7759.

DOI: 10.1002/2015wr018555

Google Scholar

[27] CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, E. Travaglini, E. Bardou, RM. Boes, Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 2. Application to field sites with direct bed load samples. Water resources research. 52 (2016b), 7760–7778.

DOI: 10.1002/2016wr019283

Google Scholar

[28] CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, RM. Boes, Measuring Bed Load Transport Rates by Grain-Size Fraction Using the Swiss Plate Geophone Signal at the Erlenbach. Journal of hydraulic engineering. 142 (2016c) 1–11.

DOI: 10.1061/(asce)hy.1943-7900.0001090

Google Scholar

[29] T. Geay, P. Belleudy, C. Gervaise, H. Habersack, J. Aigner, A. Kreisler, J.B. Laronne, Passive acoustic monitoring of bed load discharge in a large gravel bed river. Journal of Geophysical Research: Earth Surface. 122 (2017) 528-545.

DOI: 10.1002/2016jf004112

Google Scholar

[30] J. Le Guern, S. Rodrigues, T. Geay, S. Zanker, A. Hauet, P. Tassi, L. Vervynck, Relevance of acoustic methods to quantify bedload transport and bedform dynamics in a large sandy-gravel-bed river, Earth Surface Dynamics. 9 (2021) 423-444.

DOI: 10.5194/esurf-9-423-2021

Google Scholar

[31] M. Llena, M.W. Smith, J.M. Wheaton, D. Vericat, Geomorphic process signatures reshaping sub‐humid Mediterranean badlands: 2. Application to 5‐year dataset, Earth Surface Processes and Landforms. 45 (2020) 1292-1310.

DOI: 10.1002/esp.4822

Google Scholar

[32] Y. Zeng, X. Meng, Y. Zhang, W. Dai, N. Fang, Z. Shi, Estimation of the volume of sediment deposited behind check dams based on UAV remote sensing, Journal of Hydrology. 612 (2022), 128-143.

DOI: 10.1016/j.jhydrol.2022.128143

Google Scholar

[33] B.R. Colby, Scour and fill in sand bed Streams, United States Geological Survey Professional Paper 462-D. (1964), 39 p.

DOI: 10.3133/pp462d

Google Scholar

[34] L.B. Leopold, W.W. Emmett, R.M. Myrick, Channel and hillslope processes in a semiarid area, New Mexico, United States Geological Survey Professional Paper 352-G. (1966) 193-249.

DOI: 10.3133/pp352g

Google Scholar

[35] J.B. Laronne, M.J. Duncan, P.A. Rodley, Bar dynamics in the North Branch Ashburton River, in: S.M., Smart, S.M., Thompson, (eds.), Ideas on the Control of Gravel Bed Rivers, New Zealand Ministry of Works and Develop, Hydrol. Centre, Publ. 9, Christchurch. (1986), pp.230-239.

Google Scholar

[36] J.B. Laronne, Microform roughness elements and the selective entrainment and entrapment of particles in gravel-bed rivers, in: P., Billi, R.D., Hey, C.R., Thorne, P.E., Taconni, (eds.), Gravel Bed Dynamics, Wiley, Chichester. (1992), pp.270-273.

DOI: 10.1127/0372-8854/2013/0127

Google Scholar

[37] P.A. Carling, Bed stability in gravel streams with reference to stream regulation and ecology, in: K., Richards, (eds.), River Channels, Environment and Process, Blackwell, Oxford. (1987), pp.321-347.

Google Scholar

[38] M.A. Hassan, Scour, Fill, and burial depth of coarse material in gravel bed streams, Earth Surf. Process and Landforms. 15 (1990) 341-356.

DOI: 10.1002/esp.3290150405

Google Scholar

[39] F. Liébault, P. Clément, La mobilité de la charge de fond des rivières torrentielles méditerranéennes, Géographie physique et quaternaire. 61 (2007) 7–20.

DOI: 10.7202/029567ar

Google Scholar

[40] H. Achiban, A. Taous, I. El-Khantoury M. El Mderssa, A. Amechrouq, Quantification of soil loss in various lithological areas of the western Middle Atlas Central: application to the Ras-Elma, Tamelalet and Sebab watershed (Tigrigra watershed, Morocco), E3S Web of Conferences. 37 (2018) 1-8.

DOI: 10.1051/e3sconf/20183704003

Google Scholar

[41] A.J. McCabe, Monitoring of bedload discharge in N.S.W. rivers, Master Thesis, New South Wales University, (1989), p.114.

Google Scholar

[42] M.G. Wolman, A Method of Sampling Coarse River-Bed Material, Transactions American Geophysical Union. 35 (1954) 951-956.

DOI: 10.1029/tr035i006p00951

Google Scholar

[43] R. Manning, On the flow of water in open channels and pipes Transactions, Institution of Civil Engineers of Ireland. 20 (1891) 161-207.

Google Scholar

[44] F. Petit, G. Perpinien, C. Deroanne, Détermination des puissances spécifiques critiques dans des rivières à charge de fond caillouteuse. Revue Géographique de l'Est. 40 (2000) 59-65.

DOI: 10.4000/rge.4203

Google Scholar

[45] N.D. Gordon, T.A. McMahon, B.L. Finlayson, Stream hydrology: an introduction for ecologists, John Wiley and Sons, Chichester, UK, 1992, 429 p.

Google Scholar

[46] W.W. Sayre, D.W. Hubbell, Transport and dispersion of labeled bed material: North Loup River, Nebraska, United States Geological Survey Professional Paper, 423-C. (1965), 55 p.

DOI: 10.3133/pp433c

Google Scholar

[47] M.J. Crickmore, Measurement of sand transport in rivers with special reference to tracer methods, Sedimentology. 8 (1967) 175-228.

DOI: 10.1111/j.1365-3091.1967.tb01321.x

Google Scholar

[48] P.A. Carling, N.A. Reader, Structure, composition and bulk properties of upland stream gravels, Earth Surface Processes and Landforms. 7 (1982) 349-365.

DOI: 10.1002/esp.3290070407

Google Scholar

[49] J.K. Haschenburger, M. Church, Bed material transport estimated from the virtual velocity of sediment, Earth Surface Processes and Landforms. 23 (1998) 791-808.

DOI: 10.1002/(sici)1096-9837(199809)23:9<791::aid-esp888>3.0.co;2-x

Google Scholar

[50] A. Brenna, N. Surian, Coarse sediment mobility and fluxes in wide mountain streams: Insights using the virtual velocity approach, Geomorphology. 427 (2023), 108625, 1-14.

DOI: 10.1016/j.geomorph.2023.108625

Google Scholar

[51] M. Cassel, J. Lavé, A. Recking, J.R. Malavoi & H. Piégay, Bedload transport in rivers, size matters but so does shape, scientific reports. 508 (2021) 1-11.

DOI: 10.1038/s41598-020-79930-7

Google Scholar

[52] E.Papangelakis, M.A. Hassan, The role of channel morphology on the mobility and dispersion of bed sediment in a small gravel-bed stream, Earth Surface Processes and Landforms. 41 (2016) 2191–2206.

DOI: 10.1002/esp.3980

Google Scholar

[53] Hd. Achiban, Hn Achiban, A. Taous, Influence de la lithologie et de la tectonique sur les profils longitudinaux de l'oued Bouhellou et de ses affluents (Moyen Atlas septentrional, Maroc), Geo-Eco-Trop. 44 (2020) 571-583.

Google Scholar

[54] Z. Li, S. Yuan, H. Tang, Y. Zhu and H. Sun, Quantifying nonlocal bedload transport: A regional-based nonlocal model for bedload transport from local to global scales, Advances in Water Resources. 177 (2023) 1-12.

DOI: 10.1016/j.advwatres.2023.104444

Google Scholar

[55] A.A. Ermilov, G. Fleit, S. Conevski, M. Guerrero, S. Baranya and N. Rüther, Bedload transport analysis using image processing techniques, Acta Géophysica. 70 (2022) 2341-2360.

DOI: 10.1007/s11600-022-00791-x

Google Scholar

[56] W. Kociuba, The Role of Bedload Transport in the Development of a Proglacial River Alluvial Fan (Case Study: Scott River, Southwest Svalbard), Hydrology. 8, 173 (2021) 1-16.

DOI: 10.3390/hydrology8040173

Google Scholar