[1]
J.B. Laronne, D.N. Outhet, P.A. Carling, T.J. McCabe, Scour chain employment in gravel bed rivers, catena. 22 (1994) 299-306.
DOI: 10.1016/0341-8162(94)90040-x
Google Scholar
[2]
A. Recking, Variation du nombre de Shields critique avec la pente, La Houille Blanche. 2008 94 (2008) 59-63.
DOI: 10.1051/lhb:2008055
Google Scholar
[3]
A. Radecki-Pawlik, P. Kubon, B. Radecki-Pawlik, K. Plesiński, Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians, Water .11(2) 272 (2019) 1-15.
DOI: 10.3390/w11020272
Google Scholar
[4]
E. Meyer-Peter, R. Mueller, Formulas for bedload transport. In Proceedings of the II Congress IAHR, Stockholm, Sweden, (1948) 39–64.
Google Scholar
[5]
P. E. Ashmore, Bedload transport in braided gravel bed stream models, Earth Surface Processes and Landforms. 13 (1988) 677-695.
DOI: 10.1002/esp.3290130803
Google Scholar
[6]
F. Liébault, Les rivières torrentielles des montagnes drômoises : évolution contemporaine et fonctionnement géomorphologique actuel (massifs du Diois et des Baronnies), Thèse de Doctorat, Université Lumière Lyon 2, (2003), p.357.
Google Scholar
[7]
L. Olinde, J.P.L. Johnson, Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream, Water Resources Research. 51 (2015) 7572– 7589.
DOI: 10.1002/2014wr016120
Google Scholar
[8]
J.C. Bathurst, Measuring and modelling bed load transport in channels with coarse bed materials, in Richards, K.S. (ed.), River Channels: Environment and Process, Blackwell, Oxford, 1987, 272-294.
Google Scholar
[9]
A. Monsalve, C. Segura, N. Nicole Hucke, S. Katz, A bed load transport equation based on the spatial distribution of shear stress – Oak Creek revisited, Earth Surface Dynamics. 8 (2020) 825-839.
DOI: 10.5194/esurf-8-825-2020
Google Scholar
[10]
K. Bunte, S.R. Abt, J.P. Potyondy, K.W. Swingle, A comparison of coarse bedload transport measured with bedload traps and Helley-Smith samplers, Geodinamica Acta. 21 (2008)53–66.
DOI: 10.3166/ga.21.53-66
Google Scholar
[11]
G. Parker, Surface-based bed load transport relation for gravel rivers, Journal of Hydraulic Research. 28 (1990) 417–436.
DOI: 10.1080/00221689009499058
Google Scholar
[12]
D.W. Hubbell, W.W. Sayre, Sand transport studies with radioactive tracers, Journal of Hydraulics Division, American Society of Civil Engineers. 90, Number HY3 (1964) 39-68.
DOI: 10.1061/jyceaj.0001057
Google Scholar
[13]
L.R. Leopold, W.W. Emmett, Bed load measurements, East Fork River, Wyoming, Proceedings of the National Academy of Science USA. 73 (1976) 1000-1004.
DOI: 10.1073/pnas.73.4.1000
Google Scholar
[14]
R.T. Milhous, Sediment transport in a gravel-bottomed stream, Ph.D. Thesis, Oregon State University, (1973), p.247.
Google Scholar
[15]
K. Ashida, T. Takahashi, T. Sawada, Sediment yield and transport on a small mountainous watershed, Bull. Disaster Prevention Research Institute, Kyoto University. 26 (1976) 119-144.
Google Scholar
[16]
I. Reid, J.T. Layman, L.E. Frostick, The Continuous Measurement of Bedload Discharge, Journal of Hydraulic Research. 18 (1980) 243-249.
DOI: 10.1080/00221688009499550
Google Scholar
[17]
D.G. McLean, M. Church, A re-examination of sediment transport observations in the Lower Fraser River Canada, Inland Waters Directorate Report IWD-HQ-WRB-SS-86-6. (1986).
Google Scholar
[18]
R.L. Beschta, Increased bag size improves Helley-Smith bed load sampler for use in streams with high sand and organic matter transport, in: Erosion and sediment transport measurement, Proceedings of the Florence symposium IAHS, Florence. no. 133 (1981) 17–25.
Google Scholar
[19]
J. Pitlick, Variability of bed load measurement, Water resources research. 24 (1988), 173–177.
DOI: 10.1029/wr024i001p00173
Google Scholar
[20]
D. Vericat, M. Church, R.J. Batalla, Bed load bias: Comparison of measurements obtained using two (76 and 152 mm) Helley-Smith samplers in a gravel bed river, Water resources research. 42 (2006) 1-13.
DOI: 10.1029/2005wr004025
Google Scholar
[21]
D. Nathan Bradley, G.E. Tucker, measuring gravel transport and dispersion on a mountain river using passive radio tracers, Earth Surface Processes and Landforms. 37(2012)1034-1045.
DOI: 10.1002/esp.3223
Google Scholar
[22]
C.L. May, B.S. Pryor, Initial motion and bedload transport distance determined by particle tracking in a large regulated river, River Research and Applications. 30 (2014) 508-520.
DOI: 10.1002/rra.2665
Google Scholar
[23]
K.H Schmidt, P. Ergenzinger, Bed load entrainment, travel lengths, step lengths, rest periods studied with passive (iron, magnetic) and active (radio) tracer techniques, Earth Surface processes and landforms. 17 (1992) 147–165.
DOI: 10.1002/esp.3290170204
Google Scholar
[24]
D. Rickenmann, B.W. McArdell, Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors, Earth Surface Processes and Landforms. 32 (2007) 1362–1378.
DOI: 10.1002/esp.1478
Google Scholar
[25]
J. Turowski, D. Rickenmann, Measuring the Statistics of Bed-Load Transport Using Indirect Sensors, Journal of Hydraulic Engineering. 137 (2011) 116-121.
DOI: 10.1061/(asce)hy.1943-7900.0000277
Google Scholar
[26]
C.CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 1. Impulse counts and particle size identification, Water resources research. 52 (2016a) 7744 –7759.
DOI: 10.1002/2015wr018555
Google Scholar
[27]
CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, E. Travaglini, E. Bardou, RM. Boes, Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 2. Application to field sites with direct bed load samples. Water resources research. 52 (2016b), 7760–7778.
DOI: 10.1002/2016wr019283
Google Scholar
[28]
CR. Wyss, D. Rickenmann, B. Fritschi, JM. Turowski, V. Weitbrecht, RM. Boes, Measuring Bed Load Transport Rates by Grain-Size Fraction Using the Swiss Plate Geophone Signal at the Erlenbach. Journal of hydraulic engineering. 142 (2016c) 1–11.
DOI: 10.1061/(asce)hy.1943-7900.0001090
Google Scholar
[29]
T. Geay, P. Belleudy, C. Gervaise, H. Habersack, J. Aigner, A. Kreisler, J.B. Laronne, Passive acoustic monitoring of bed load discharge in a large gravel bed river. Journal of Geophysical Research: Earth Surface. 122 (2017) 528-545.
DOI: 10.1002/2016jf004112
Google Scholar
[30]
J. Le Guern, S. Rodrigues, T. Geay, S. Zanker, A. Hauet, P. Tassi, L. Vervynck, Relevance of acoustic methods to quantify bedload transport and bedform dynamics in a large sandy-gravel-bed river, Earth Surface Dynamics. 9 (2021) 423-444.
DOI: 10.5194/esurf-9-423-2021
Google Scholar
[31]
M. Llena, M.W. Smith, J.M. Wheaton, D. Vericat, Geomorphic process signatures reshaping sub‐humid Mediterranean badlands: 2. Application to 5‐year dataset, Earth Surface Processes and Landforms. 45 (2020) 1292-1310.
DOI: 10.1002/esp.4822
Google Scholar
[32]
Y. Zeng, X. Meng, Y. Zhang, W. Dai, N. Fang, Z. Shi, Estimation of the volume of sediment deposited behind check dams based on UAV remote sensing, Journal of Hydrology. 612 (2022), 128-143.
DOI: 10.1016/j.jhydrol.2022.128143
Google Scholar
[33]
B.R. Colby, Scour and fill in sand bed Streams, United States Geological Survey Professional Paper 462-D. (1964), 39 p.
DOI: 10.3133/pp462d
Google Scholar
[34]
L.B. Leopold, W.W. Emmett, R.M. Myrick, Channel and hillslope processes in a semiarid area, New Mexico, United States Geological Survey Professional Paper 352-G. (1966) 193-249.
DOI: 10.3133/pp352g
Google Scholar
[35]
J.B. Laronne, M.J. Duncan, P.A. Rodley, Bar dynamics in the North Branch Ashburton River, in: S.M., Smart, S.M., Thompson, (eds.), Ideas on the Control of Gravel Bed Rivers, New Zealand Ministry of Works and Develop, Hydrol. Centre, Publ. 9, Christchurch. (1986), pp.230-239.
Google Scholar
[36]
J.B. Laronne, Microform roughness elements and the selective entrainment and entrapment of particles in gravel-bed rivers, in: P., Billi, R.D., Hey, C.R., Thorne, P.E., Taconni, (eds.), Gravel Bed Dynamics, Wiley, Chichester. (1992), pp.270-273.
DOI: 10.1127/0372-8854/2013/0127
Google Scholar
[37]
P.A. Carling, Bed stability in gravel streams with reference to stream regulation and ecology, in: K., Richards, (eds.), River Channels, Environment and Process, Blackwell, Oxford. (1987), pp.321-347.
Google Scholar
[38]
M.A. Hassan, Scour, Fill, and burial depth of coarse material in gravel bed streams, Earth Surf. Process and Landforms. 15 (1990) 341-356.
DOI: 10.1002/esp.3290150405
Google Scholar
[39]
F. Liébault, P. Clément, La mobilité de la charge de fond des rivières torrentielles méditerranéennes, Géographie physique et quaternaire. 61 (2007) 7–20.
DOI: 10.7202/029567ar
Google Scholar
[40]
H. Achiban, A. Taous, I. El-Khantoury M. El Mderssa, A. Amechrouq, Quantification of soil loss in various lithological areas of the western Middle Atlas Central: application to the Ras-Elma, Tamelalet and Sebab watershed (Tigrigra watershed, Morocco), E3S Web of Conferences. 37 (2018) 1-8.
DOI: 10.1051/e3sconf/20183704003
Google Scholar
[41]
A.J. McCabe, Monitoring of bedload discharge in N.S.W. rivers, Master Thesis, New South Wales University, (1989), p.114.
Google Scholar
[42]
M.G. Wolman, A Method of Sampling Coarse River-Bed Material, Transactions American Geophysical Union. 35 (1954) 951-956.
DOI: 10.1029/tr035i006p00951
Google Scholar
[43]
R. Manning, On the flow of water in open channels and pipes Transactions, Institution of Civil Engineers of Ireland. 20 (1891) 161-207.
Google Scholar
[44]
F. Petit, G. Perpinien, C. Deroanne, Détermination des puissances spécifiques critiques dans des rivières à charge de fond caillouteuse. Revue Géographique de l'Est. 40 (2000) 59-65.
DOI: 10.4000/rge.4203
Google Scholar
[45]
N.D. Gordon, T.A. McMahon, B.L. Finlayson, Stream hydrology: an introduction for ecologists, John Wiley and Sons, Chichester, UK, 1992, 429 p.
Google Scholar
[46]
W.W. Sayre, D.W. Hubbell, Transport and dispersion of labeled bed material: North Loup River, Nebraska, United States Geological Survey Professional Paper, 423-C. (1965), 55 p.
DOI: 10.3133/pp433c
Google Scholar
[47]
M.J. Crickmore, Measurement of sand transport in rivers with special reference to tracer methods, Sedimentology. 8 (1967) 175-228.
DOI: 10.1111/j.1365-3091.1967.tb01321.x
Google Scholar
[48]
P.A. Carling, N.A. Reader, Structure, composition and bulk properties of upland stream gravels, Earth Surface Processes and Landforms. 7 (1982) 349-365.
DOI: 10.1002/esp.3290070407
Google Scholar
[49]
J.K. Haschenburger, M. Church, Bed material transport estimated from the virtual velocity of sediment, Earth Surface Processes and Landforms. 23 (1998) 791-808.
DOI: 10.1002/(sici)1096-9837(199809)23:9<791::aid-esp888>3.0.co;2-x
Google Scholar
[50]
A. Brenna, N. Surian, Coarse sediment mobility and fluxes in wide mountain streams: Insights using the virtual velocity approach, Geomorphology. 427 (2023), 108625, 1-14.
DOI: 10.1016/j.geomorph.2023.108625
Google Scholar
[51]
M. Cassel, J. Lavé, A. Recking, J.R. Malavoi & H. Piégay, Bedload transport in rivers, size matters but so does shape, scientific reports. 508 (2021) 1-11.
DOI: 10.1038/s41598-020-79930-7
Google Scholar
[52]
E.Papangelakis, M.A. Hassan, The role of channel morphology on the mobility and dispersion of bed sediment in a small gravel-bed stream, Earth Surface Processes and Landforms. 41 (2016) 2191–2206.
DOI: 10.1002/esp.3980
Google Scholar
[53]
Hd. Achiban, Hn Achiban, A. Taous, Influence de la lithologie et de la tectonique sur les profils longitudinaux de l'oued Bouhellou et de ses affluents (Moyen Atlas septentrional, Maroc), Geo-Eco-Trop. 44 (2020) 571-583.
Google Scholar
[54]
Z. Li, S. Yuan, H. Tang, Y. Zhu and H. Sun, Quantifying nonlocal bedload transport: A regional-based nonlocal model for bedload transport from local to global scales, Advances in Water Resources. 177 (2023) 1-12.
DOI: 10.1016/j.advwatres.2023.104444
Google Scholar
[55]
A.A. Ermilov, G. Fleit, S. Conevski, M. Guerrero, S. Baranya and N. Rüther, Bedload transport analysis using image processing techniques, Acta Géophysica. 70 (2022) 2341-2360.
DOI: 10.1007/s11600-022-00791-x
Google Scholar
[56]
W. Kociuba, The Role of Bedload Transport in the Development of a Proglacial River Alluvial Fan (Case Study: Scott River, Southwest Svalbard), Hydrology. 8, 173 (2021) 1-16.
DOI: 10.3390/hydrology8040173
Google Scholar