[1]
M. Osial, A. Pregowska, S. Wilczewski, W. Urbańska, M. Giersig, Waste management for green concrete solutions: a concise critical review, Recycling 7(3) (2022) 37.
DOI: 10.3390/recycling7030037
Google Scholar
[2]
A. Umar, A. Muoka, A.G. Amuda, A. Sanusi, A. Dayyabu, A.D. Mambo, Mechanical Influence of Steel Binding Wires as Fiber Reinforcement in Concrete, 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), IEEE, 2021, pp.1-5.
DOI: 10.1109/icmeas52683.2021.9692379
Google Scholar
[3]
M. Nodehi, S.E. Nodehi, Ultra high performance concrete (UHPC): Reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete, Innovative Infrastructure Solutions 7(1) (2022) 39.
DOI: 10.1007/s41062-021-00641-7
Google Scholar
[4]
L. Chen, Z. Chen, Z. Xie, L. Wei, J. Hua, L. Huang, P.-S. Yap, Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities, Developments in the Built Environment 16 (2023) 100255.
DOI: 10.1016/j.dibe.2023.100255
Google Scholar
[5]
N.M.S. Hasan, N.M.N. Shaurdho, M.H.R. Sobuz, M.M. Meraz, M.A. Basit, S.C. Paul, M.J. Miah, Rheological, mechanical, and micro-structural property assessment of eco-friendly concrete reinforced with waste areca nut husk fiber, Sustainability 15(19) (2023) 14131.
DOI: 10.3390/su151914131
Google Scholar
[6]
G. Sua-Iam, N. Makul, Utilization of limestone powder to improve the properties of self-compacting concrete incorporating high volumes of untreated rice husk ash as fine aggregate, Construction and Building Materials 38 (2013) 455-464.
DOI: 10.1016/j.conbuildmat.2012.08.016
Google Scholar
[7]
M. Boutlikht, K. Hebbache, A. Douadi, S. Tabchouche, Assessment of the PVC Waste Addition Effect on the Concrete Mechanical Performance, Journal of Composite & Advanced Materials/Revue des Composites et des Matériaux Avancés 33(2) (2023).
DOI: 10.18280/rcma.330203
Google Scholar
[8]
Ö.B. Ceran, B. Şimşek, T. Uygunoğlu, O.N. Şara, PVC concrete composites: comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties, Journal of Material Cycles and Waste Management 21 (2019) 818-828.
DOI: 10.1007/s10163-019-00846-0
Google Scholar
[9]
Y. Wang, J. Xiao, J. Zhang, Z. Duan, Mechanical behavior of concrete prepared with waste marble powder, Sustainability 14(7) (2022) 4170.
DOI: 10.3390/su14074170
Google Scholar
[10]
M.A. Moghadam, R.A. Izadifard, Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures, Fire Safety Journal 113 (2020) 102978.
DOI: 10.1016/j.firesaf.2020.102978
Google Scholar
[11]
V.B. Chandra, K.B. Chari, V.R. Rao, The comprehensive analytical investigation on blended cement concrete beams with glass fibers under flexural loading, Materials Today: Proceedings 33 (2020) 587-592.
DOI: 10.1016/j.matpr.2020.05.498
Google Scholar
[12]
C. Aksoylu, Y.O. Özkılıç, M. Hadzima-Nyarko, E. Işık, M.H. Arslan, Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires, Sustainability 14(20) (2022) 13360.
DOI: 10.3390/su142013360
Google Scholar
[13]
S.A. Yıldızel, Y.O. Özkılıç, A. Bahrami, C. Aksoylu, B. Başaran, A. Hakamy, M.H. Arslan, Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres, Case Studies in Construction Materials 19 (2023) e02227.
DOI: 10.1016/j.cscm.2023.e02227
Google Scholar
[14]
M. Doğruyol, E. Ayhan, A. Karaşin, Effect of waste steel fiber use on concrete behavior at high temperature, Case Studies in Construction Materials 20 (2024) e03051.
DOI: 10.1016/j.cscm.2024.e03051
Google Scholar
[15]
K. Aghaee, M.A. Yazdi, Waste steel wires modified structural lightweight concrete, Materials Research 17 (2014) 958-966.
DOI: 10.1590/1516-1439.257413
Google Scholar
[16]
T. Sun, X. Wang, N. Maimaitituersun, S. Dong, L. Li, B. Han, Synergistic effects of steel fibers and steel wires on uniaxial tensile mechanical and self-sensing properties of UHPC, Construction and Building Materials 416 (2024) 134991.
DOI: 10.1016/j.conbuildmat.2024.134991
Google Scholar
[17]
M.H. Naser, F.H. Naser, M.K. Dhahir, Tensile behavior of fiber reinforced cement mortar using wastes of electrical connections wires and galvanized binding wires, Construction and Building Materials 264 (2020) 120244.
DOI: 10.1016/j.conbuildmat.2020.120244
Google Scholar
[18]
W. Mansour, S. Fayed, Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers, Steel and Composite Structures, an International Journal 41(3) (2021) 317-334.
Google Scholar
[19]
Y.-F. Li, H.-F. Wang, J.-Y. Syu, G.K. Ramanathan, Y.-K. Tsai, M.H. Lok, Mechanical properties of aramid/carbon hybrid fiber-reinforced concrete, Materials 14(19) (2021) 5881.
DOI: 10.3390/ma14195881
Google Scholar
[20]
K. Liew, A. Akbar, The recent progress of recycled steel fiber reinforced concrete, Construction and Building Materials 232 (2020) 117232.
DOI: 10.1016/j.conbuildmat.2019.117232
Google Scholar
[21]
J. Ahmad, R.A. González-Lezcano, A. Majdi, N. Ben Kahla, A.F. Deifalla, M.A. El-Shorbagy, Glass fibers reinforced concrete: Overview on mechanical, durability and microstructure analysis, Materials 15(15) (2022) 5111.
DOI: 10.3390/ma15155111
Google Scholar
[22]
A. Conforti, F. Minelli, A. Tinini, G.A. Plizzari, Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams, Engineering Structures 88 (2015) 12-21.
DOI: 10.1016/j.engstruct.2015.01.037
Google Scholar
[23]
D. Soulioti, N. Barkoula, A. Paipetis, T. Matikas, Effects of fibre geometry and volume fraction on the flexural behaviour of steel‐fibre reinforced concrete, Strain 47 (2011) e535-e541.
DOI: 10.1111/j.1475-1305.2009.00652.x
Google Scholar
[24]
L. Yang, X. Lin, R.J. Gravina, Evaluation of dynamic increase factor models for steel fibre reinforced concrete, Construction and building materials 190 (2018) 632-644.
DOI: 10.1016/j.conbuildmat.2018.09.085
Google Scholar
[25]
G. James, U. Samuel, Application of steel binding wires to control shear in concrete production, Int. J. Civ. Eng. Technol. 9(11) (2018) 2901-2917.
Google Scholar
[26]
A. Standard, Building code requirements for structural concrete (ACI 318-11), American Concrete Institute, 2011.
Google Scholar
[27]
N.E. 933-1, Essais pour déterminer les caractéristiques géométriques des granulats–Partie 1: détermination de la granularité–Analyse granulométrique par tamisage, AFNOR Paris, France, 2012.
Google Scholar
[28]
E. SIST, 196-2 (2013) Method of testing cement-Part 2: Chemical analysis of cement, European committee for standardization (CEN) and Slovenian institute for standardization (SIST).
Google Scholar
[29]
I. 20290-5:2023, Aggregates for concrete — Test methods for mechanical and physical properties — Part 5: Determination of particle size distribution by sieving method, iTeh Standards, 2023.
DOI: 10.3403/30408123u
Google Scholar
[30]
G. Dreux, J. Festa, Nouveau guide du béton et de ses constitutants, Eyrolles1998.
Google Scholar
[31]
N.E.-. AFNOR, Testing fresh concrete - Part 8 : self-compacting concrete - Slump-flow test., 2019.
DOI: 10.3403/30210219u
Google Scholar
[32]
AFNOR, NF EN 196-1 Methods of testing cement - Part 1: Determination of strength. Paris, Franch., 2016.
Google Scholar
[33]
P. Dutron, European (EN) and World (ISO) Standards—Comparison with ASTM Standards, Cement, Concrete, and Aggregates 15(2) (1993) 145-148.
DOI: 10.1520/cca10601j
Google Scholar
[34]
N. EN, 206/CN Béton-Spécification, performance, production et conformité-Complément national à la norme NF EN 206, AFNOR, La Plaine St-Denis (2014).
Google Scholar
[35]
S. Li, S. Cheng, L. Mo, M. Deng, Effects of steel slag powder and expansive agent on the properties of ultra-high performance concrete (UHPC): based on a case study, Materials 13(3) (2020) 683.
DOI: 10.3390/ma13030683
Google Scholar
[36]
A. Shishegaran, F. Daneshpajoh, H. Taghavizade, S. Mirvalad, Developing conductive concrete containing wire rope and steel powder wastes for route deicing, Construction and Building Materials 232 (2020) 117184.
DOI: 10.1016/j.conbuildmat.2019.117184
Google Scholar
[37]
J. Han, M. Zhao, J. Chen, X. Lan, Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete, Construction and Building Materials 209 (2019) 577-591.
DOI: 10.1016/j.conbuildmat.2019.03.086
Google Scholar
[38]
A. Shukla, N. Gupta, K. Kishore, Experimental investigation on the effect of steel fiber embedded in marble dust based concrete, Materials Today: Proceedings 26 (2020) 2938-2945.
DOI: 10.1016/j.matpr.2020.02.607
Google Scholar
[39]
G. Lavanya, J. Jegan, Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity, Int. J. Appl. Eng. Res 10(15) (2015) 35523-35527.
Google Scholar