Taguchi-Based Analysis of EPAC Constituents Affecting Natural Self-Healing in Non-Structural Concrete

Article Preview

Abstract:

Expanded Polystyrene Aggregate Concrete (EPAC) offers reduced structural density and carbon footprint while maintaining acceptable mechanical performance, making it a promising material for sustainable, seismic-resistant construction. This study investigates the natural self-healing behavior of EPAC, a largely unexplored area, using the Taguchi method to analyze the effects of EPS percentage of total aggregate volume (60%, 70%, 80%), cement content (410, 515, 594 kg/m3), and W/C (0.45, 0.5, 0.55). A novel method developed in this study, quantified a maximum healing efficiency of 67.5%, with results indicating that higher EPS content enhances healing due to its elastic nature. Compressive strength, thermal conductivity, and density were also assessed to validate the method’s reliability. The findings demonstrate the utility of the Taguchi method in construction materials research by reducing experimental workload while maintaining analytical depth. The proposed healing assessment method opens new avenues for evaluating durability in EPS-based concretes, supporting future innovations in sustainable construction.

You might also be interested in these eBooks

Info:

Pages:

35-51

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Prasittisopin, P. Termkhajornkit, Y.H. Kim, Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects, J. Clean. Prod. 366 (2022) 132919.

DOI: 10.1016/j.jclepro.2022.132919

Google Scholar

[2] J.J. Brooks, Concrete Technology, 2010.

Google Scholar

[3] G. Bumanis et al., Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites, Recycling 8 (2023) 19.

DOI: 10.3390/recycling8010019

Google Scholar

[4] J. Hidalgo-Crespo et al., Circular economy of expanded polystyrene container production: Environmental benefits of household waste recycling considering renewable energies, Energy Rep. 8 (2022) 306-311.

DOI: 10.1016/j.egyr.2022.01.071

Google Scholar

[5] Ministère de l'habitat et de la politique de la ville, Le Reglement de Construction Parasismique RPS 2000- version 2011, 2011.

Google Scholar

[6] B. Vakhshouri, S. Nejadi, Review on the mixture design and mechanical properties of the lightweight concrete containing expanded polystyrene beads, Aust. J. Struct. Eng. 19 (2018) 1-23.

DOI: 10.1080/13287982.2017.1353330

Google Scholar

[7] T.F.L. Subhan, Lightweight high strength concrete with expanded polystyrene beads, Mektek 8 (2006).

Google Scholar

[8] A. Talaiekhozani, M.Z.A. Majid, A review of self-healing concrete research development, J. Environ. Treat. Tech. 2 (2014) 1-11.

Google Scholar

[9] D. Lahmann, C. Edvardsen, S. Kessler, Autogenous self-healing of concrete: Experimental design and test methods - A review, Eng. Rep. 5 (2023) e12565.

DOI: 10.1002/eng2.12565

Google Scholar

[10] Y. Wang, X. Zhuang, Experimental study on mechanical properties of graded EPS-steel fiber-reinforced concrete, 2024.

DOI: 10.3390/app15041980

Google Scholar

[11] M.W. Hisam et al., The versatility of the Taguchi method: Optimizing experiments across diverse disciplines, J. Stat. Theory Appl. 23 (2024) 365-389.

DOI: 10.1007/s44199-024-00093-9

Google Scholar

[12] N.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, properties, and materials, 2006.

Google Scholar

[13] S.H. Perry, P.H. Bischoff, K. Yamura, Mix details and material behaviour of polystyrene aggregate concrete, Mag. Concr. Res. 43 (1991) 71-76.

DOI: 10.1680/macr.1991.43.154.71

Google Scholar

[14] D.S. Babu, K.G. Babu, T.H. Wee, Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cem. Concr. Res. 35 (2005) 1218-1223.

DOI: 10.1016/j.cemconres.2004.11.015

Google Scholar

[15] A. Laukaitis, R. Žurauskas, J. Kerien, The effect of foam polystyrene granules on cement composite properties, Cem. Concr. Compos. 27 (2005) 41-47.

DOI: 10.1016/j.cemconcomp.2003.09.004

Google Scholar

[16] B. Chen, J. Liu, Properties of lightweight expanded polystyrene concrete reinforced with steel fiber, Cem. Concr. Res. 34 (2004) 1259-1263, doi: https://doi.org/10.1016/j.cemconres. 2003.12.014.

DOI: 10.1016/j.cemconres.2003.12.014

Google Scholar

[17] K.G. Babu, D.S. Babu, Behaviour of lightweight expanded polystyrene concrete containing silica fume, Cem. Concr. Res. 33 (2003) 755-762.

DOI: 10.1016/s0008-8846(02)01055-4

Google Scholar

[18] A. Kan, R. Demirboğa, A novel material for lightweight concrete production, Cem. Concr. Compos. 31 (2009) 489-495.

DOI: 10.1016/j.cemconcomp.2009.05.002

Google Scholar

[19] R. Le Roy, E. Parant, C. Boulay, Taking into account the inclusions' size in lightweight concrete compressive strength prediction, Cem. Concr. Res. 35 (2005) 770-775.

DOI: 10.1016/j.cemconres.2004.06.002

Google Scholar

[20] N. De Belie et al., A review of self-healing concrete for damage management of structures, Adv. Mater. Interfaces 5 (2018) 1800074.

Google Scholar

[21] K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—A review, Materials 6 (2013) 2182-2217.

DOI: 10.3390/ma6062182

Google Scholar

[22] M. Roig-Flores et al., Self-healing capability of concrete with crystalline admixtures in different environments, Constr. Build. Mater. 86 (2015) 1-11.

DOI: 10.1016/j.conbuildmat.2015.03.091

Google Scholar

[23] H.M. Jonkers et al., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng. 36 (2010) 230-235.

Google Scholar

[24] M. Pelletier et al., Self-healing concrete with a microencapsulated healing agent, Kingston, USA, 2011.

Google Scholar

[25] F. Huang, S. Zhou, A review of lightweight self-healing concrete, Materials 15 (2022) 7572.

Google Scholar

[26] D.K. Jaf, P.I. Abdulrahman, A review on self-healing concrete, Adv. Mater. Res. 1175 (2023) 139-148.

DOI: 10.4028/p-52lej6

Google Scholar

[27] F.J. Vázquez-Rodríguez et al., Effect of mineral aggregates and chemical admixtures as internal curing agents on the mechanical properties and durability of high-performance concrete, Materials 13 (2020) 2090.

DOI: 10.3390/ma13092090

Google Scholar

[28] D. Snoeck et al., The use of superabsorbent polymers as a crack sealing and crack healing mechanism in cementitious materials, 3rd international conference on concrete repair, rehabilitation and retrofitting, Cape Town, 2012, pp.152-157.

DOI: 10.1201/b12750-24

Google Scholar

[29] W. Liu, J. Han, Fiber synergy of polyvinyl alcohol and steel fibers on the bond behavior of a hybrid fiber-reinforced cementitious composite, Materials 17 (2024) 629.

DOI: 10.3390/ma17030629

Google Scholar

[30] H. Doostkami et al., Self-healing capability of conventional, high-performance, and ultra high-performance concrete with commercial bacteria characterized by means of water and chloride penetration, Constr. Build. Mater. 401 (2023) 132903.

DOI: 10.1016/j.conbuildmat.2023.132903

Google Scholar

[31] C. De Nardi et al., Effect of age and level of damage on the autogenous healing of lime mortars, Compos. Part B Eng. 124 (2017) 144-157.

DOI: 10.1016/j.compositesb.2017.05.041

Google Scholar

[32] Y. Xu et al., Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Constr. Build. Mater. 27 (2012) 32-38, doi: https://doi.org/10.1016/j.conbuildmat. 2011.08.030.

DOI: 10.1016/j.conbuildmat.2011.08.030

Google Scholar

[33] A.M. Gusyachkin et al., Effects of moisture content on thermal conductivity of thermal insulation materials, IOP Conf. Ser.: Mater. Sci. Eng. 570 (2019) 012029.

DOI: 10.1088/1757-899X/570/1/012029

Google Scholar

[34] ASTM International, ASTM C177-19: Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus, West Conshohocken, PA, 2019, https://www.astm.org/c0177-19.html.

DOI: 10.1520/c0177

Google Scholar

[35] European Committee for Standardization (CEN), EN 1015-11:2007 - Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar, Brussels, Belgium, 2007.

DOI: 10.3403/01905442

Google Scholar

[36] X.F. Wang et al., Evaluation of the mechanical performance recovery of self-healing cementitious materials-its methods and future development: a review, Constr. Build. Mater. 212 (2019) 400-421.

DOI: 10.1016/j.conbuildmat.2019.03.117

Google Scholar

[37] M. Ahmed, J. Mallick, M.A. Hasan, A study of factors affecting the flexural tensile strength of concrete, J. King Saud Univ. Eng. Sci. 28 (2016) 147-156.

DOI: 10.1016/j.jksues.2014.04.001

Google Scholar

[38] International Code Council, 2021 International Building Code (IBC): ICC digital codes, 2021, https://codes.iccsafe.org/content/IBC2021P1/chapter-19-concrete#IBC2021P1_Ch19_Sec1903.

Google Scholar

[39] R. Wassermann, A. Katz, A. Bentur, Minimum cement content requirements: a must or a myth?, Mater. Struct. 42 (2009) 973-982.

DOI: 10.1617/s11527-008-9436-0

Google Scholar

[40] P. Taylor, E. Yurdakul, M. Brink, Performance-based proportioning, Concr. Int. 37 (2015) 41-46.

Google Scholar

[41] B.J. Addis, M.G. Alexander, Cement-saturation and its effects on the compressive strength and stiffness of concrete, Cem. Concr. Res. 24 (1994) 975-986.

DOI: 10.1016/0008-8846(94)90018-3

Google Scholar

[42] B . Lothenbach, A. Nonat, Calcium silicate hydrates: Solid and liquid phase composition, Cem. Concr. Res. 78 (2015) 57-70.

DOI: 10.1016/j.cemconres.2015.03.019

Google Scholar

[43] D. Ratna, Thermal properties of thermosets, 2012.

DOI: 10.1533/9780857097637.1.62

Google Scholar

[44] R. Demirboga, A. Kan, Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes, Constr. Build. Mater. 35 (2012) 730-734.

DOI: 10.1016/j.conbuildmat.2012.04.105

Google Scholar

[45] H. Uysal et al., The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete, Cem. Concr. Res. 34 (2004) 845-848.

DOI: 10.1016/j.cemconres.2003.09.018

Google Scholar

[46] M.J.A. Qomi, F-J. Ulm, R.J-M. Pellenq, Physical origins of thermal properties of cement paste, Phys. Rev. Appl. 3 (2015) 064010.

DOI: 10.1103/physrevapplied.3.064010

Google Scholar

[47] P.A. Claisse, Civil engineering materials, 2015.

DOI: 10.1016/b978-0-08-100275-9.00020-6

Google Scholar

[48] K. Tomczak, J. Jakubowski, The effects of age, cement content, and healing time on the self-healing ability of high-strength concrete, Constr. Build. Mater. 187 (2018) 149-159.

DOI: 10.1016/j.conbuildmat.2018.07.176

Google Scholar

[49] L. Andena et al., Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study, J. Cell. Plast. 55 (2019) 49-72.

DOI: 10.1177/0021955X18806794

Google Scholar