[1]
L. Prasittisopin, P. Termkhajornkit, Y.H. Kim, Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects, J. Clean. Prod. 366 (2022) 132919.
DOI: 10.1016/j.jclepro.2022.132919
Google Scholar
[2]
J.J. Brooks, Concrete Technology, 2010.
Google Scholar
[3]
G. Bumanis et al., Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites, Recycling 8 (2023) 19.
DOI: 10.3390/recycling8010019
Google Scholar
[4]
J. Hidalgo-Crespo et al., Circular economy of expanded polystyrene container production: Environmental benefits of household waste recycling considering renewable energies, Energy Rep. 8 (2022) 306-311.
DOI: 10.1016/j.egyr.2022.01.071
Google Scholar
[5]
Ministère de l'habitat et de la politique de la ville, Le Reglement de Construction Parasismique RPS 2000- version 2011, 2011.
Google Scholar
[6]
B. Vakhshouri, S. Nejadi, Review on the mixture design and mechanical properties of the lightweight concrete containing expanded polystyrene beads, Aust. J. Struct. Eng. 19 (2018) 1-23.
DOI: 10.1080/13287982.2017.1353330
Google Scholar
[7]
T.F.L. Subhan, Lightweight high strength concrete with expanded polystyrene beads, Mektek 8 (2006).
Google Scholar
[8]
A. Talaiekhozani, M.Z.A. Majid, A review of self-healing concrete research development, J. Environ. Treat. Tech. 2 (2014) 1-11.
Google Scholar
[9]
D. Lahmann, C. Edvardsen, S. Kessler, Autogenous self-healing of concrete: Experimental design and test methods - A review, Eng. Rep. 5 (2023) e12565.
DOI: 10.1002/eng2.12565
Google Scholar
[10]
Y. Wang, X. Zhuang, Experimental study on mechanical properties of graded EPS-steel fiber-reinforced concrete, 2024.
DOI: 10.3390/app15041980
Google Scholar
[11]
M.W. Hisam et al., The versatility of the Taguchi method: Optimizing experiments across diverse disciplines, J. Stat. Theory Appl. 23 (2024) 365-389.
DOI: 10.1007/s44199-024-00093-9
Google Scholar
[12]
N.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, properties, and materials, 2006.
Google Scholar
[13]
S.H. Perry, P.H. Bischoff, K. Yamura, Mix details and material behaviour of polystyrene aggregate concrete, Mag. Concr. Res. 43 (1991) 71-76.
DOI: 10.1680/macr.1991.43.154.71
Google Scholar
[14]
D.S. Babu, K.G. Babu, T.H. Wee, Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cem. Concr. Res. 35 (2005) 1218-1223.
DOI: 10.1016/j.cemconres.2004.11.015
Google Scholar
[15]
A. Laukaitis, R. Žurauskas, J. Kerien, The effect of foam polystyrene granules on cement composite properties, Cem. Concr. Compos. 27 (2005) 41-47.
DOI: 10.1016/j.cemconcomp.2003.09.004
Google Scholar
[16]
B. Chen, J. Liu, Properties of lightweight expanded polystyrene concrete reinforced with steel fiber, Cem. Concr. Res. 34 (2004) 1259-1263, doi: https://doi.org/10.1016/j.cemconres. 2003.12.014.
DOI: 10.1016/j.cemconres.2003.12.014
Google Scholar
[17]
K.G. Babu, D.S. Babu, Behaviour of lightweight expanded polystyrene concrete containing silica fume, Cem. Concr. Res. 33 (2003) 755-762.
DOI: 10.1016/s0008-8846(02)01055-4
Google Scholar
[18]
A. Kan, R. Demirboğa, A novel material for lightweight concrete production, Cem. Concr. Compos. 31 (2009) 489-495.
DOI: 10.1016/j.cemconcomp.2009.05.002
Google Scholar
[19]
R. Le Roy, E. Parant, C. Boulay, Taking into account the inclusions' size in lightweight concrete compressive strength prediction, Cem. Concr. Res. 35 (2005) 770-775.
DOI: 10.1016/j.cemconres.2004.06.002
Google Scholar
[20]
N. De Belie et al., A review of self-healing concrete for damage management of structures, Adv. Mater. Interfaces 5 (2018) 1800074.
Google Scholar
[21]
K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—A review, Materials 6 (2013) 2182-2217.
DOI: 10.3390/ma6062182
Google Scholar
[22]
M. Roig-Flores et al., Self-healing capability of concrete with crystalline admixtures in different environments, Constr. Build. Mater. 86 (2015) 1-11.
DOI: 10.1016/j.conbuildmat.2015.03.091
Google Scholar
[23]
H.M. Jonkers et al., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng. 36 (2010) 230-235.
Google Scholar
[24]
M. Pelletier et al., Self-healing concrete with a microencapsulated healing agent, Kingston, USA, 2011.
Google Scholar
[25]
F. Huang, S. Zhou, A review of lightweight self-healing concrete, Materials 15 (2022) 7572.
Google Scholar
[26]
D.K. Jaf, P.I. Abdulrahman, A review on self-healing concrete, Adv. Mater. Res. 1175 (2023) 139-148.
DOI: 10.4028/p-52lej6
Google Scholar
[27]
F.J. Vázquez-Rodríguez et al., Effect of mineral aggregates and chemical admixtures as internal curing agents on the mechanical properties and durability of high-performance concrete, Materials 13 (2020) 2090.
DOI: 10.3390/ma13092090
Google Scholar
[28]
D. Snoeck et al., The use of superabsorbent polymers as a crack sealing and crack healing mechanism in cementitious materials, 3rd international conference on concrete repair, rehabilitation and retrofitting, Cape Town, 2012, pp.152-157.
DOI: 10.1201/b12750-24
Google Scholar
[29]
W. Liu, J. Han, Fiber synergy of polyvinyl alcohol and steel fibers on the bond behavior of a hybrid fiber-reinforced cementitious composite, Materials 17 (2024) 629.
DOI: 10.3390/ma17030629
Google Scholar
[30]
H. Doostkami et al., Self-healing capability of conventional, high-performance, and ultra high-performance concrete with commercial bacteria characterized by means of water and chloride penetration, Constr. Build. Mater. 401 (2023) 132903.
DOI: 10.1016/j.conbuildmat.2023.132903
Google Scholar
[31]
C. De Nardi et al., Effect of age and level of damage on the autogenous healing of lime mortars, Compos. Part B Eng. 124 (2017) 144-157.
DOI: 10.1016/j.compositesb.2017.05.041
Google Scholar
[32]
Y. Xu et al., Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Constr. Build. Mater. 27 (2012) 32-38, doi: https://doi.org/10.1016/j.conbuildmat. 2011.08.030.
DOI: 10.1016/j.conbuildmat.2011.08.030
Google Scholar
[33]
A.M. Gusyachkin et al., Effects of moisture content on thermal conductivity of thermal insulation materials, IOP Conf. Ser.: Mater. Sci. Eng. 570 (2019) 012029.
DOI: 10.1088/1757-899X/570/1/012029
Google Scholar
[34]
ASTM International, ASTM C177-19: Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus, West Conshohocken, PA, 2019, https://www.astm.org/c0177-19.html.
DOI: 10.1520/c0177
Google Scholar
[35]
European Committee for Standardization (CEN), EN 1015-11:2007 - Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar, Brussels, Belgium, 2007.
DOI: 10.3403/01905442
Google Scholar
[36]
X.F. Wang et al., Evaluation of the mechanical performance recovery of self-healing cementitious materials-its methods and future development: a review, Constr. Build. Mater. 212 (2019) 400-421.
DOI: 10.1016/j.conbuildmat.2019.03.117
Google Scholar
[37]
M. Ahmed, J. Mallick, M.A. Hasan, A study of factors affecting the flexural tensile strength of concrete, J. King Saud Univ. Eng. Sci. 28 (2016) 147-156.
DOI: 10.1016/j.jksues.2014.04.001
Google Scholar
[38]
International Code Council, 2021 International Building Code (IBC): ICC digital codes, 2021, https://codes.iccsafe.org/content/IBC2021P1/chapter-19-concrete#IBC2021P1_Ch19_Sec1903.
Google Scholar
[39]
R. Wassermann, A. Katz, A. Bentur, Minimum cement content requirements: a must or a myth?, Mater. Struct. 42 (2009) 973-982.
DOI: 10.1617/s11527-008-9436-0
Google Scholar
[40]
P. Taylor, E. Yurdakul, M. Brink, Performance-based proportioning, Concr. Int. 37 (2015) 41-46.
Google Scholar
[41]
B.J. Addis, M.G. Alexander, Cement-saturation and its effects on the compressive strength and stiffness of concrete, Cem. Concr. Res. 24 (1994) 975-986.
DOI: 10.1016/0008-8846(94)90018-3
Google Scholar
[42]
B . Lothenbach, A. Nonat, Calcium silicate hydrates: Solid and liquid phase composition, Cem. Concr. Res. 78 (2015) 57-70.
DOI: 10.1016/j.cemconres.2015.03.019
Google Scholar
[43]
D. Ratna, Thermal properties of thermosets, 2012.
DOI: 10.1533/9780857097637.1.62
Google Scholar
[44]
R. Demirboga, A. Kan, Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes, Constr. Build. Mater. 35 (2012) 730-734.
DOI: 10.1016/j.conbuildmat.2012.04.105
Google Scholar
[45]
H. Uysal et al., The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete, Cem. Concr. Res. 34 (2004) 845-848.
DOI: 10.1016/j.cemconres.2003.09.018
Google Scholar
[46]
M.J.A. Qomi, F-J. Ulm, R.J-M. Pellenq, Physical origins of thermal properties of cement paste, Phys. Rev. Appl. 3 (2015) 064010.
DOI: 10.1103/physrevapplied.3.064010
Google Scholar
[47]
P.A. Claisse, Civil engineering materials, 2015.
DOI: 10.1016/b978-0-08-100275-9.00020-6
Google Scholar
[48]
K. Tomczak, J. Jakubowski, The effects of age, cement content, and healing time on the self-healing ability of high-strength concrete, Constr. Build. Mater. 187 (2018) 149-159.
DOI: 10.1016/j.conbuildmat.2018.07.176
Google Scholar
[49]
L. Andena et al., Compression of polystyrene and polypropylene foams for energy absorption applications: A combined mechanical and microstructural study, J. Cell. Plast. 55 (2019) 49-72.
DOI: 10.1177/0021955X18806794
Google Scholar