Thermal and Mechanical Performance of Innovative Solid Olive Waste Composite for Use as Insulating Materials in Building

Article Preview

Abstract:

The construction industry remains a major contributor to global CO₂ emissions, primarily due to its high consumption of non-renewable mineral resources and energy-intensive materials. In response to the growing need for sustainable alternatives, this study focuses on valorizing lignocellulosic biomass waste specifically Solid Olive Waste (SOW), a byproduct of olive oil production abundant in Mediterranean countries as a partial replacement for mineral aggregates in concrete. The main objective is to develop and evaluate an Innovative Solid Olive Waste Composite (ISOWC) as an eco-friendly material suitable for construction sector. The incorporation of SOW was optimized using the Talbot–Fuller–Thompson (T-F-T) semi-empirical method, which enabled the determination of ideal incorporation rates (10%, 20%, and 30% by aggregate volume) based on maximum packing density. Composite formulations were developed using the volumetric mix design method, incorporating both raw and water-saturated SOW. Comparative tests demonstrated that saturated SOW significantly improved the composite’s compressive strength and thermal conductivity, particularly as the SOW content increased. To further assess performance, a sensitivity analysis was conducted on ISOWC with 30% saturated SOW at varying cement dosages (200–350 kg/m³). The formulation with 200 kg/m³ cement achieved a compressive strength of approximately 6 MPa and thermal conductivity of 0.72 W/mK, meeting the criteria for insulating applications such as blocks and cladding panels. These results highlight the promising potential of ISOWC and support further investigation into the use of Solid Olive Waste as a full replacement for gravel in the development of eco-efficient, sand-based concretes.

You might also be interested in these eBooks

Info:

Pages:

79-98

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Wałach, A. Mach, Effect of Concrete Mix Composition on Greenhouse Gas Emissions over the Full Life Cycle of a Structure, Energies 16 (7) (2023) 3229

DOI: 10.3390/en16073229

Google Scholar

[2] C. Zhou, D. Xuan, Y. Miao, X. Luo, W. Liu, Y. Zhang, Accounting CO₂ Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis, Energies 16 (11) (2023) 4453

DOI: 10.3390/en16114453

Google Scholar

[3] A. Dellagi, R. Ayed, S. Skouri, S. Bouadila, A. Guizani, Analyzing recycled waste-infused mortars: Preparation and examination of thermal, mechanical, and chemical characteristics, Constr. Build. Mater. 425 (2024) 135996.

DOI: 10.1016/j.conbuildmat.2024.135996

Google Scholar

[4] L.E. Mette, Nos Députés.fr, https://20172022.nosdeputes.fr/15/amendement/3995/7012 (2021).

Google Scholar

[5] United Nations Environment Programme (UNEP), Buildings and Climate Change: Status, Challenges and Opportunities, Sustainable Buildings and Construction Initiative, UNEP, 2007. ISBN 978-92-807-2795-1.

Google Scholar

[6] F. Barreca, C.R. Fichera, Use of olive stone as an additive in cement lime mortar to improve thermal insulation, Energy Build. 62 (2013) 507–513.

DOI: 10.1016/j.enbuild.2013.03.040

Google Scholar

[7] European Environment Agency (EEA), Report No. 05/2008: Greenhouse gas, EEA, 2008.

Google Scholar

[8] A.A.H. Al-Mohamadawi, Contribution à l'étude de l'impact de l'environnement [Doctoral dissertation, Université de Picardie Jules Verne], 2016.

Google Scholar

[9] R.K. Patel, A. Babaei Ghazvini, M. Dunlop, B. Acharya, Biomaterials-based Concrete Composites: A Review on Biochar, Cellulose, and Lignin, Carbon Capture Sci. Technol. 12 (2024) 100232.

DOI: 10.1016/j.ccst.2024.100232

Google Scholar

[10] P. Shafigh, H.B. Mahmud, M.Z. Jumaat, M. Zargar, Agricultural wastes as aggregate in concrete mixtures: a review, Constr. Build. Mater. 53 (2014) 110–117.

DOI: 10.1016/j.conbuildmat.2013.11.074

Google Scholar

[11] F. Pacheco-Torgal, S. Jalali, Cementitious building materials reinforced with vegetable fibres: a review, Constr. Build. Mater. 25 (2) (2011) 575–581.

DOI: 10.1016/j.conbuildmat.2010.07.024

Google Scholar

[12] E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes: a review, Constr. Build. Mater. 74 (2015) 176–187.

DOI: 10.1016/j.conbuildmat.2014.10.010

Google Scholar

[13] M. Safiuddin, M.A. Salam, M.Z. Jumaat, Utilization of palm oil fuel ash in concrete: a review, J. Civ. Eng. Manag. 17 (2) (2011) 234–247.

DOI: 10.3846/13923730.2011.574450

Google Scholar

[14] A. Guo, Z. Sun, H. Feng, H. Shang, N. Sathitsuksanoh, State-of-the-art review on the use of lignocellulosic biomass in cementitious materials, Sustainable Structures (2023).

DOI: 10.54113/j.sust.2023.000023

Google Scholar

[15] C.M. Mihăilă, M. Benta, Characterization of a lightweight concrete with sunflower aggregates, Procedia Manuf. 22 (2018) 154–159.

Google Scholar

[16] T. Cheboub, Y. Senhadji, Investigation of the engineering properties of environmentally-friendly self-compacting lightweight mortar containing olive kernel shells as aggregate, J. Clean. Prod. (2019).

DOI: 10.1016/j.jclepro.2019.119406

Google Scholar

[17] K.H. Mo, J. Alengaram, Green concrete partially comprised of farming waste residues: a review, J. Clean. Prod. (2016).

DOI: 10.1016/j.jclepro.2016.01.022

Google Scholar

[18] Yu, H., Wu, J., Gao, Y., Lu, Z., & Hu, W., Research progress on bamboo fiber reinforced polymeric composites: Processes, properties, and future directions, Polymer Composites, 45(11) (2024) 9629–9646.

DOI: 10.1002/pc.28436

Google Scholar

[19] M. Nlandu-Mayamba, et al., Exploring Chemical and Physical Advancements in Surface Modification Techniques of Natural Fiber Reinforced Composite: A Comprehensive Review, J. Nat. Fibers 21 (1) (2024) 1–20.

DOI: 10.1080/15440478.2024.2408633

Google Scholar

[20] S. Medhioub, S. Bouraoui, A. Ellouze, H. Sabeur, Nutrients deficit and water stress in plants: New concept solutions using olive solid waste, in: Plant Defense Mechanisms, IntechOpen, 2022, p.87–99.

DOI: 10.5772/intechopen.95214

Google Scholar

[21] A. Odefisan, A. Olorunnisola, Effects of Selected Pre-treatment Methods on the Hydration Behaviour of Rattan-Cement Mixtures, Afribary (2021), https://afribary.com/works/effects-of-selected-pre-treatment-methods-on-the-hydration-behaviour-of-rattan-cement-mixtures.

DOI: 10.1016/j.cemconcomp.2007.08.002

Google Scholar

[22] K.M.F. Hasan, P.G. Horváth, T. Alpár, Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology, Cellulose 28 (2021) 3631–3645.

DOI: 10.1007/s10570-021-03755-4

Google Scholar

[23] Y. Ren, J. Gong, X. Xu, et al., Breaking of biomass recalcitrance in flax: clean pretreatment for bio-degumming, Cellulose 30 (1) (2023) 111–125.

DOI: 10.1007/s10570-022-04831-z

Google Scholar

[24] K.H. Mo, U.J. Alengaram, M.Z. Jumaat, A review on the use of agriculture waste material as lightweight aggregate for reinforced concrete structural members, Adv. Mater. Sci. Eng. 2014 (2014) Article ID 365197.

DOI: 10.1155/2014/365197

Google Scholar

[25] W. Zhu, L. Huang, L. Mao, M. Esmaeili-Falak, Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms, Struct. Concr. 23 (6) (2022) 3631–3650.

DOI: 10.1002/suco.202100656

Google Scholar

[26] C. Wen, D. Shen, Z. Feng, C. Liu, S. Deng, Relationship between internal relative humidity and autogenous shrinkage of early-age concrete containing prewetted lightweight aggregates, Struct. Concr. 24 (3) (2022) 4110–4125.

DOI: 10.1002/suco.202200295

Google Scholar

[27] A. Sellami, M. Merzoud, S. Amziane, Improvement of mechanical properties of green concrete by treatment of the vegetal fibers, Constr. Build. Mater. 47 (2013) 1117–1124.

DOI: 10.1016/j.conbuildmat.2013.05.073

Google Scholar

[28] Y.B. Traore, A. Messan, K. Hannawi, J. Gerard, W. Prince, F. Tsobnang, Effect of oil palm shell treatment on the physical and mechanical properties of lightweight concrete, Constr. Build. Mater. 161 (2018) 452–460.

DOI: 10.1016/j.conbuildmat.2017.11.155

Google Scholar

[29] V. Nozahic, Vers une nouvelle démarche de conception des bétons de végétaux lignocellulosiques basée sur la compréhension et l'amélioration de l'interface liant / végétal: application à des granulats de chenevotte et de tige de tournesol associés à un liant ponce, Université Blaise Pascal - Clermont-Ferrand II, 2012, p.334. NNT: 2012CLF22265.

DOI: 10.4000/flaubert.2087

Google Scholar

[30] International Olive Council (IOC), World Table Olive Figures, http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive-figures (2019).

Google Scholar

[31] G.F. Cifuni, S. Claps, G. Morone, L. Sepe, P. Caparra, C. Benincasa, M. Pellegrino, E. Perri, Valorisation des sous-produits des moulins à huile d'olive: récupération de composés biophénoliques et application dans l'alimentation animale, Plants 12 (17) (2023) 3062

DOI: 10.3390/plants12173062

Google Scholar

[32] S. Medhioub, E. Jendoubi, Autonomous water and nutritional anti-stress device to solve a plant irrigation problem based on harvested rainwater: A Tunisian case study, Irrig. Drain. (2021) 1–14.

DOI: 10.1002/ird.2580

Google Scholar

[33] M.A. Uddin, S.Y.A. Siddiki, S.F. Ahmed, Z.I. Rony, M.A.K. Chowdhury, M. Mofijur, Estimation of sustainable bioenergy production from olive mill solid waste, Energies 14 (22) (2021) 7654.

DOI: 10.3390/en14227654

Google Scholar

[34] A. Roig, M.L. Cayuela, M.A. Sánchez-Monedero, An overview on olive mill wastes and their valorisation methods, Waste Manag. 26 (9) (2006) 960–969.

DOI: 10.1016/j.wasman.2005.07.024

Google Scholar

[35] H. El Hajjouji, F. Barje, E. Pinelli, J.R. Bailly, Optimization of the composting process of olive mill wastes using experimental designs, J. Hazard. Mater. 154 (1–3) (2008) 643–650.

Google Scholar

[36] Hamzehzad Yoneslouei, N., Meshkat, S. S., & Behroozsarand, A. (2024). Removal of impurities from industrial hydrogen peroxide using carbon-based adsorbents. Journal of Chemical Technology & Biotechnology, 100(1), 202–214.

DOI: 10.1002/jctb.7765

Google Scholar

[37] A. Mamaní, Y. Maturano, L. Herrero, L. Montoro, F. Sardella, Augmentation des sucres fermentescibles dans la biomasse de taille d'olivier pour la production de bioéthanol : application d'un plan d'expériences pour l'optimisation du prétraitement alcalin, Periodica Polytechnica Chemical Engineering 66 (2) (2022) 269–278.

DOI: 10.3311/PPch.18247

Google Scholar

[38] Cosmoliva, http://www.cosmoliva.co.uk/html/liquid.html (2007).

Google Scholar

[39] Korres, http://www.amazon.com/Korres-Olive-Stone Scrub/Combination/dp/B0002VXTTQ (2007).

Google Scholar

[40] G.G. Stavropoulos, A.A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Micropor. Mesopor. Mater. 82 (2005) 79–85.

DOI: 10.1016/j.micromeso.2005.03.009

Google Scholar

[41] M. Mbarek, H. Jedli, R. Rabhi, K. Slimi, Activated carbon derived from olive waste for the adsorption of methylene blue and methyl orange dyes, ChemistrySelect 9 (2024) e202404066.

DOI: 10.1002/slct.202404066

Google Scholar

[42] S. Jurado-Contreras, F.J. Navas-Martos, J.A. Rodríguez-Liébana, A.J. Moya, M.D. La Rubia, Fabrication et caractérisation de biocomposites à base de polypropylène recyclé et de noyaux d'olive, Polymers 14 (19) (2022) 4206.

DOI: 10.3390/polym14194206

Google Scholar

[43] L. Carraro, A. Trocino, G. Xiccato, Dietary supplementation with olive stone meal in growing rabbits, Ital. J. Anim. Sci. 4 (2005) 88–90.

DOI: 10.4081/ijas.2005.3s.88

Google Scholar

[44] D. Dawson, [Online] Available at: http://www.dennisdawson.com/industry.htm (accessed May 3, 2025).

Google Scholar

[45] A.H. Alami, Experiments on olive husk-addition to masonry clay bricks on their mechanical properties, and their application and manufacturability as an insulating material, Adv. Mater. Res. 86 (2010) 874–880.

DOI: 10.4028/www.scientific.net/amr.83-86.874

Google Scholar

[46] N.M. Al-Akhras, M.Y. Abdulwahid, Utilisation of olive waste ash in mortar mixes, Struct. Concr. 11 (4) (2010) 221–228.

DOI: 10.1680/stco.2010.11.4.221

Google Scholar

[47] J.K. Kim, S.M. Oh, S.S. Lim, H.K. Shin, Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages, Biochem. Biophys. Res. Commun. 345 (2006) 1215–1223.

DOI: 10.1016/j.bbrc.2006.05.035

Google Scholar

[48] M. Zdiri, B. Mustapha, Formulation et Simulation des bétons compactes au rouleau: Application aux matériaux de gisements locaux, Colloque CMEDIMAT (2005).

Google Scholar

[49] EN-197-1 (2011), Cement - Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization.

Google Scholar

[50] S. Bouchemella, Travaux pratiques en mécanique des sols, Éditions Universitaires Européennes, Saarbrücken, 2021.

Google Scholar

[51] ISO 22007-2:2022, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method.

DOI: 10.3403/30427388

Google Scholar

[52] S. Ghosh, Ultrasonic pulse velocity testing for the evaluation of concrete's strength and durability, J. Civil Eng. Mater. 67 (2) (2015) 171–178.

Google Scholar

[53] NF EN 12350-7: Essais pour béton frais - Partie 7: teneur en air - Méthode de la compressibilité.

Google Scholar

[54] NF EN 206-1: Concrete - Specification, performance, production and conformity - National addition.

Google Scholar

[55] A.M. Neville, Properties of Concrete, 5th ed., Pearson Education, 2012.

Google Scholar

[56] B.S. Mohammed, M. Abdullahi, C. Hoong, Statistical models for concrete containing wood chipping as partial replacement to fine aggregate, Constr. Build. Mater. 55 (2014) 13–19.

DOI: 10.1016/j.conbuildmat.2014.01.021

Google Scholar

[57] F. Jorge, C. Pereira, J. Ferreira, Wood-cement composites: a review, Holz als Roh- und Werkstoff 62 (5) (2004) 370–377.

DOI: 10.1007/s00107-004-0501-2

Google Scholar

[58] P.A. Bonnet-Masimbert, F. Gauvin, H. Brouwers, S. Amziane, Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres, Results in Engineering 7 (2020) 100150.

DOI: 10.1016/j.rineng.2020.100150

Google Scholar

[59] G. Penu, La Thermique du Bâtiment, DUNOD, 2015, ISBN 978-2-10-074151-9.

Google Scholar

[60] RILEM Recommandation (1975) n°10.2 et n°4.

Google Scholar

[61] A. Bielohrad, Concrete manufacturing with a low CO2 footprint, Technol. Audit. Prod. Res. 3 (3/71) (2023) 6–10

DOI: 10.15587/2706-5448.2023.281246

Google Scholar

[62] M. Dwarampudi, B. Venkateshwari, Performance of lightweight concrete with different aggregates a comprehensive review, Discover Civil Engineering 1 (2024) 46.

DOI: 10.1007/s44290-024-00015-9

Google Scholar

[63] M. el Boukhari, O. Merroun, C. Maalouf, F. Bogard, B. Kissi, Mechanical performance of cement mortar with olive pomace aggregates and olive mill wastewater: an experimental investigation, Cogent Engineering 10 (1) (2023).

DOI: 10.1080/23311916.2023.2212522

Google Scholar