[1]
D. Wałach, A. Mach, Effect of Concrete Mix Composition on Greenhouse Gas Emissions over the Full Life Cycle of a Structure, Energies 16 (7) (2023) 3229
DOI: 10.3390/en16073229
Google Scholar
[2]
C. Zhou, D. Xuan, Y. Miao, X. Luo, W. Liu, Y. Zhang, Accounting CO₂ Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis, Energies 16 (11) (2023) 4453
DOI: 10.3390/en16114453
Google Scholar
[3]
A. Dellagi, R. Ayed, S. Skouri, S. Bouadila, A. Guizani, Analyzing recycled waste-infused mortars: Preparation and examination of thermal, mechanical, and chemical characteristics, Constr. Build. Mater. 425 (2024) 135996.
DOI: 10.1016/j.conbuildmat.2024.135996
Google Scholar
[4]
L.E. Mette, Nos Députés.fr, https://20172022.nosdeputes.fr/15/amendement/3995/7012 (2021).
Google Scholar
[5]
United Nations Environment Programme (UNEP), Buildings and Climate Change: Status, Challenges and Opportunities, Sustainable Buildings and Construction Initiative, UNEP, 2007. ISBN 978-92-807-2795-1.
Google Scholar
[6]
F. Barreca, C.R. Fichera, Use of olive stone as an additive in cement lime mortar to improve thermal insulation, Energy Build. 62 (2013) 507–513.
DOI: 10.1016/j.enbuild.2013.03.040
Google Scholar
[7]
European Environment Agency (EEA), Report No. 05/2008: Greenhouse gas, EEA, 2008.
Google Scholar
[8]
A.A.H. Al-Mohamadawi, Contribution à l'étude de l'impact de l'environnement [Doctoral dissertation, Université de Picardie Jules Verne], 2016.
Google Scholar
[9]
R.K. Patel, A. Babaei Ghazvini, M. Dunlop, B. Acharya, Biomaterials-based Concrete Composites: A Review on Biochar, Cellulose, and Lignin, Carbon Capture Sci. Technol. 12 (2024) 100232.
DOI: 10.1016/j.ccst.2024.100232
Google Scholar
[10]
P. Shafigh, H.B. Mahmud, M.Z. Jumaat, M. Zargar, Agricultural wastes as aggregate in concrete mixtures: a review, Constr. Build. Mater. 53 (2014) 110–117.
DOI: 10.1016/j.conbuildmat.2013.11.074
Google Scholar
[11]
F. Pacheco-Torgal, S. Jalali, Cementitious building materials reinforced with vegetable fibres: a review, Constr. Build. Mater. 25 (2) (2011) 575–581.
DOI: 10.1016/j.conbuildmat.2010.07.024
Google Scholar
[12]
E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes: a review, Constr. Build. Mater. 74 (2015) 176–187.
DOI: 10.1016/j.conbuildmat.2014.10.010
Google Scholar
[13]
M. Safiuddin, M.A. Salam, M.Z. Jumaat, Utilization of palm oil fuel ash in concrete: a review, J. Civ. Eng. Manag. 17 (2) (2011) 234–247.
DOI: 10.3846/13923730.2011.574450
Google Scholar
[14]
A. Guo, Z. Sun, H. Feng, H. Shang, N. Sathitsuksanoh, State-of-the-art review on the use of lignocellulosic biomass in cementitious materials, Sustainable Structures (2023).
DOI: 10.54113/j.sust.2023.000023
Google Scholar
[15]
C.M. Mihăilă, M. Benta, Characterization of a lightweight concrete with sunflower aggregates, Procedia Manuf. 22 (2018) 154–159.
Google Scholar
[16]
T. Cheboub, Y. Senhadji, Investigation of the engineering properties of environmentally-friendly self-compacting lightweight mortar containing olive kernel shells as aggregate, J. Clean. Prod. (2019).
DOI: 10.1016/j.jclepro.2019.119406
Google Scholar
[17]
K.H. Mo, J. Alengaram, Green concrete partially comprised of farming waste residues: a review, J. Clean. Prod. (2016).
DOI: 10.1016/j.jclepro.2016.01.022
Google Scholar
[18]
Yu, H., Wu, J., Gao, Y., Lu, Z., & Hu, W., Research progress on bamboo fiber reinforced polymeric composites: Processes, properties, and future directions, Polymer Composites, 45(11) (2024) 9629–9646.
DOI: 10.1002/pc.28436
Google Scholar
[19]
M. Nlandu-Mayamba, et al., Exploring Chemical and Physical Advancements in Surface Modification Techniques of Natural Fiber Reinforced Composite: A Comprehensive Review, J. Nat. Fibers 21 (1) (2024) 1–20.
DOI: 10.1080/15440478.2024.2408633
Google Scholar
[20]
S. Medhioub, S. Bouraoui, A. Ellouze, H. Sabeur, Nutrients deficit and water stress in plants: New concept solutions using olive solid waste, in: Plant Defense Mechanisms, IntechOpen, 2022, p.87–99.
DOI: 10.5772/intechopen.95214
Google Scholar
[21]
A. Odefisan, A. Olorunnisola, Effects of Selected Pre-treatment Methods on the Hydration Behaviour of Rattan-Cement Mixtures, Afribary (2021), https://afribary.com/works/effects-of-selected-pre-treatment-methods-on-the-hydration-behaviour-of-rattan-cement-mixtures.
DOI: 10.1016/j.cemconcomp.2007.08.002
Google Scholar
[22]
K.M.F. Hasan, P.G. Horváth, T. Alpár, Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology, Cellulose 28 (2021) 3631–3645.
DOI: 10.1007/s10570-021-03755-4
Google Scholar
[23]
Y. Ren, J. Gong, X. Xu, et al., Breaking of biomass recalcitrance in flax: clean pretreatment for bio-degumming, Cellulose 30 (1) (2023) 111–125.
DOI: 10.1007/s10570-022-04831-z
Google Scholar
[24]
K.H. Mo, U.J. Alengaram, M.Z. Jumaat, A review on the use of agriculture waste material as lightweight aggregate for reinforced concrete structural members, Adv. Mater. Sci. Eng. 2014 (2014) Article ID 365197.
DOI: 10.1155/2014/365197
Google Scholar
[25]
W. Zhu, L. Huang, L. Mao, M. Esmaeili-Falak, Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms, Struct. Concr. 23 (6) (2022) 3631–3650.
DOI: 10.1002/suco.202100656
Google Scholar
[26]
C. Wen, D. Shen, Z. Feng, C. Liu, S. Deng, Relationship between internal relative humidity and autogenous shrinkage of early-age concrete containing prewetted lightweight aggregates, Struct. Concr. 24 (3) (2022) 4110–4125.
DOI: 10.1002/suco.202200295
Google Scholar
[27]
A. Sellami, M. Merzoud, S. Amziane, Improvement of mechanical properties of green concrete by treatment of the vegetal fibers, Constr. Build. Mater. 47 (2013) 1117–1124.
DOI: 10.1016/j.conbuildmat.2013.05.073
Google Scholar
[28]
Y.B. Traore, A. Messan, K. Hannawi, J. Gerard, W. Prince, F. Tsobnang, Effect of oil palm shell treatment on the physical and mechanical properties of lightweight concrete, Constr. Build. Mater. 161 (2018) 452–460.
DOI: 10.1016/j.conbuildmat.2017.11.155
Google Scholar
[29]
V. Nozahic, Vers une nouvelle démarche de conception des bétons de végétaux lignocellulosiques basée sur la compréhension et l'amélioration de l'interface liant / végétal: application à des granulats de chenevotte et de tige de tournesol associés à un liant ponce, Université Blaise Pascal - Clermont-Ferrand II, 2012, p.334. NNT: 2012CLF22265.
DOI: 10.4000/flaubert.2087
Google Scholar
[30]
International Olive Council (IOC), World Table Olive Figures, http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive-figures (2019).
Google Scholar
[31]
G.F. Cifuni, S. Claps, G. Morone, L. Sepe, P. Caparra, C. Benincasa, M. Pellegrino, E. Perri, Valorisation des sous-produits des moulins à huile d'olive: récupération de composés biophénoliques et application dans l'alimentation animale, Plants 12 (17) (2023) 3062
DOI: 10.3390/plants12173062
Google Scholar
[32]
S. Medhioub, E. Jendoubi, Autonomous water and nutritional anti-stress device to solve a plant irrigation problem based on harvested rainwater: A Tunisian case study, Irrig. Drain. (2021) 1–14.
DOI: 10.1002/ird.2580
Google Scholar
[33]
M.A. Uddin, S.Y.A. Siddiki, S.F. Ahmed, Z.I. Rony, M.A.K. Chowdhury, M. Mofijur, Estimation of sustainable bioenergy production from olive mill solid waste, Energies 14 (22) (2021) 7654.
DOI: 10.3390/en14227654
Google Scholar
[34]
A. Roig, M.L. Cayuela, M.A. Sánchez-Monedero, An overview on olive mill wastes and their valorisation methods, Waste Manag. 26 (9) (2006) 960–969.
DOI: 10.1016/j.wasman.2005.07.024
Google Scholar
[35]
H. El Hajjouji, F. Barje, E. Pinelli, J.R. Bailly, Optimization of the composting process of olive mill wastes using experimental designs, J. Hazard. Mater. 154 (1–3) (2008) 643–650.
Google Scholar
[36]
Hamzehzad Yoneslouei, N., Meshkat, S. S., & Behroozsarand, A. (2024). Removal of impurities from industrial hydrogen peroxide using carbon-based adsorbents. Journal of Chemical Technology & Biotechnology, 100(1), 202–214.
DOI: 10.1002/jctb.7765
Google Scholar
[37]
A. Mamaní, Y. Maturano, L. Herrero, L. Montoro, F. Sardella, Augmentation des sucres fermentescibles dans la biomasse de taille d'olivier pour la production de bioéthanol : application d'un plan d'expériences pour l'optimisation du prétraitement alcalin, Periodica Polytechnica Chemical Engineering 66 (2) (2022) 269–278.
DOI: 10.3311/PPch.18247
Google Scholar
[38]
Cosmoliva, http://www.cosmoliva.co.uk/html/liquid.html (2007).
Google Scholar
[39]
Korres, http://www.amazon.com/Korres-Olive-Stone Scrub/Combination/dp/B0002VXTTQ (2007).
Google Scholar
[40]
G.G. Stavropoulos, A.A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Micropor. Mesopor. Mater. 82 (2005) 79–85.
DOI: 10.1016/j.micromeso.2005.03.009
Google Scholar
[41]
M. Mbarek, H. Jedli, R. Rabhi, K. Slimi, Activated carbon derived from olive waste for the adsorption of methylene blue and methyl orange dyes, ChemistrySelect 9 (2024) e202404066.
DOI: 10.1002/slct.202404066
Google Scholar
[42]
S. Jurado-Contreras, F.J. Navas-Martos, J.A. Rodríguez-Liébana, A.J. Moya, M.D. La Rubia, Fabrication et caractérisation de biocomposites à base de polypropylène recyclé et de noyaux d'olive, Polymers 14 (19) (2022) 4206.
DOI: 10.3390/polym14194206
Google Scholar
[43]
L. Carraro, A. Trocino, G. Xiccato, Dietary supplementation with olive stone meal in growing rabbits, Ital. J. Anim. Sci. 4 (2005) 88–90.
DOI: 10.4081/ijas.2005.3s.88
Google Scholar
[44]
D. Dawson, [Online] Available at: http://www.dennisdawson.com/industry.htm (accessed May 3, 2025).
Google Scholar
[45]
A.H. Alami, Experiments on olive husk-addition to masonry clay bricks on their mechanical properties, and their application and manufacturability as an insulating material, Adv. Mater. Res. 86 (2010) 874–880.
DOI: 10.4028/www.scientific.net/amr.83-86.874
Google Scholar
[46]
N.M. Al-Akhras, M.Y. Abdulwahid, Utilisation of olive waste ash in mortar mixes, Struct. Concr. 11 (4) (2010) 221–228.
DOI: 10.1680/stco.2010.11.4.221
Google Scholar
[47]
J.K. Kim, S.M. Oh, S.S. Lim, H.K. Shin, Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages, Biochem. Biophys. Res. Commun. 345 (2006) 1215–1223.
DOI: 10.1016/j.bbrc.2006.05.035
Google Scholar
[48]
M. Zdiri, B. Mustapha, Formulation et Simulation des bétons compactes au rouleau: Application aux matériaux de gisements locaux, Colloque CMEDIMAT (2005).
Google Scholar
[49]
EN-197-1 (2011), Cement - Part 1: Composition, specifications and conformity criteria for common cements, European Committee for Standardization.
Google Scholar
[50]
S. Bouchemella, Travaux pratiques en mécanique des sols, Éditions Universitaires Européennes, Saarbrücken, 2021.
Google Scholar
[51]
ISO 22007-2:2022, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method.
DOI: 10.3403/30427388
Google Scholar
[52]
S. Ghosh, Ultrasonic pulse velocity testing for the evaluation of concrete's strength and durability, J. Civil Eng. Mater. 67 (2) (2015) 171–178.
Google Scholar
[53]
NF EN 12350-7: Essais pour béton frais - Partie 7: teneur en air - Méthode de la compressibilité.
Google Scholar
[54]
NF EN 206-1: Concrete - Specification, performance, production and conformity - National addition.
Google Scholar
[55]
A.M. Neville, Properties of Concrete, 5th ed., Pearson Education, 2012.
Google Scholar
[56]
B.S. Mohammed, M. Abdullahi, C. Hoong, Statistical models for concrete containing wood chipping as partial replacement to fine aggregate, Constr. Build. Mater. 55 (2014) 13–19.
DOI: 10.1016/j.conbuildmat.2014.01.021
Google Scholar
[57]
F. Jorge, C. Pereira, J. Ferreira, Wood-cement composites: a review, Holz als Roh- und Werkstoff 62 (5) (2004) 370–377.
DOI: 10.1007/s00107-004-0501-2
Google Scholar
[58]
P.A. Bonnet-Masimbert, F. Gauvin, H. Brouwers, S. Amziane, Study of modifications on the chemical and mechanical compatibility between cement matrix and oil palm fibres, Results in Engineering 7 (2020) 100150.
DOI: 10.1016/j.rineng.2020.100150
Google Scholar
[59]
G. Penu, La Thermique du Bâtiment, DUNOD, 2015, ISBN 978-2-10-074151-9.
Google Scholar
[60]
RILEM Recommandation (1975) n°10.2 et n°4.
Google Scholar
[61]
A. Bielohrad, Concrete manufacturing with a low CO2 footprint, Technol. Audit. Prod. Res. 3 (3/71) (2023) 6–10
DOI: 10.15587/2706-5448.2023.281246
Google Scholar
[62]
M. Dwarampudi, B. Venkateshwari, Performance of lightweight concrete with different aggregates a comprehensive review, Discover Civil Engineering 1 (2024) 46.
DOI: 10.1007/s44290-024-00015-9
Google Scholar
[63]
M. el Boukhari, O. Merroun, C. Maalouf, F. Bogard, B. Kissi, Mechanical performance of cement mortar with olive pomace aggregates and olive mill wastewater: an experimental investigation, Cogent Engineering 10 (1) (2023).
DOI: 10.1080/23311916.2023.2212522
Google Scholar