Structural and Electronic Properties of Neptunium Sulphide: An Ab Initio Study

Article Preview

Abstract:

The density functional theory within generalized gradient approximation (GGA) has been used to calculate lattice parameter, total energy, phase transition pressure and electronic properties of neptunium sulphide (NpS). From our calculations we observe that NpS is stable in NaCl – type structure under ambient pressure. For this compound, the phase transition pressure was found to be 29.5 GPa. The nature of metallic behaviour is remarked from energy band diagram in NpS. All properties obtained for this compound are in good agreement with available results.

You might also be interested in these eBooks

Info:

Pages:

23-26

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.K. Jha and SP Sanyal, Structural phase transition in uranium arsenide and telluride, Physica status solidi (b) 200, (1997) 13-18.

DOI: 10.1002/1521-3951(199703)200:1<13::aid-pssb13>3.0.co;2-u

Google Scholar

[2] P.K. Jha and SP Sanyal, Pressure–volume relation and pressure induced structural phase transformation in ytterbium pnictides, physica status solidi (b) 205 (1998) 465-471.

DOI: 10.1002/(sici)1521-3951(199802)205:2<465::aid-pssb465>3.0.co;2-i

Google Scholar

[3] P.K. Jha and S.P. Sanyal, Lattice vibrations in Yb-pnictide compounds, Physical Review B 52 (1995), 15898.

DOI: 10.1103/physrevb.52.15898

Google Scholar

[4] P.K. Jha and S.P. Sanyal, Lattice vibrations in intermediate valence compounds SmS and TmSe Indian Journal of Pure and Applied Physics 31 (1993), 469-473.

Google Scholar

[5] P.K. Jha, S.P. Sanyal, Lattice vibrational properties of uranium chalcogenides, Physica B: Condensed Matter 216 (1995), 125-131.

DOI: 10.1016/0921-4526(95)00438-6

Google Scholar

[6] S.D. Gupta, S.K. Gupta and P.K. Jha, First-principles lattice dynamical study of lanthanum nitride under pseudopotential approximation, Computational Materials Science 49 (2010), 910-915.

DOI: 10.1016/j.commatsci.2010.06.046

Google Scholar

[7] P.K. Jha and S.P. Sanyal, High pressure behavior of NpSe and NpTe, Journal of Physics and Chemistry of Solids 64 (2003), 127-131.

DOI: 10.1016/s0022-3697(02)00272-x

Google Scholar

[8] H. L. Skriver, and B. Johansson, in: A. J. Freeman and G. H. Lander (Eds. ). Handbook on the Physics and Chemistry of the Actinides, Amsterdam: North Holland, 1984, pp.45-130.

Google Scholar

[9] H. H. Hill, in Plutonium1970 and other actinides, Proceedings of the 4th International Conference on Plutonium and other Actinides, Santa Fe, New Maxico, edited by W. N. Miner 17, Met. Soc. AIME, New York, 1970, pp.2-19.

Google Scholar

[10] C. Makode, S.P. sanyal, Pressure induced structural phase transition and electronic properties of actinide monophospides: Ab-initio calculations, Physica B 406 (2011) 3175-3179.

DOI: 10.1016/j.physb.2011.05.020

Google Scholar

[11] L. Gerward, J. S. Olsen, U. Benedict, S. Dabos and O. Vogt, Bulk moduli and high-pressure phases of the uranium rocksalt structure compounds-I. The monochalcogenides, High Press Res. 1 (1989) 235-251.

DOI: 10.1080/08957958908222854

Google Scholar

[12] U. Benedict, S. Dabos-Seignon, J. P. Dancausse, M. Gensini, E. Gering, S. Heathman, H. Luo, J. S. Olsen, L. Gerward, R.G. Haire, Actinide compound under pressure, J Alloys Compounds 181 (1992) 1-12.

DOI: 10.1016/0925-8388(92)90292-h

Google Scholar

[13] T. Le. Bihan, S. Heathman, J. Rebizant, Properties on neptunium monochalcogenides, High Pressure Res. 15 (1997) 387-395.

Google Scholar

[14] M. Gensini, U. Benedict and J. Rebizant, High pressure phase and compressibility of NpSe, J Alloys Compounds 201 (1993) L19-L20.

DOI: 10.1016/0925-8388(93)90850-m

Google Scholar

[15] M. Gensini, E. Gering, S. Heathman, U. Bendict and J. C. Spirlet, High-pressure phases of plutonium monoselenide studied by X-ray diffraction, High Pres Res. 2 (1990) 347-359.

DOI: 10.1080/08957959008203187

Google Scholar

[16] C. Abraham, U. Benedict and J.C. Spirlet, Optical reflectivity of neptunium and plutonium monochalcogenides under high pressure, Physica B 222 (1996) 52-60.

DOI: 10.1016/0921-4526(96)00015-4

Google Scholar

[17] M. Aynyas, B. S. Arya, A. Rukmangad and Sankar P. Sanyal, The lattice dynamical properties of neptunium chalcogenides, Indian Journal of Pure & Applied Physics 53 (2015) 98-101.

DOI: 10.1063/1.4710245

Google Scholar

[18] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kuasnicka, J. Luitz, WIEN2K, an augmented plane wave+local orbitals program for calculating crystal properties, K. Schwarz Technical Universitat, Wien, Austria, ISBN 3-9501031-1-2, (2001).

Google Scholar

[19] J. P. Perdew, K. Burke and M. Ernzerhop, Generalized gradient approximation made sample, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integration, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[21] F. Birch, The effect of pressure upon the elastic properties of isotropic solids according to Murnaghan's theory of finite strain, J. Appl. Phys. 9 (1938) 279-288.

DOI: 10.1063/1.1710417

Google Scholar