A Theoretical Investigation on Structural and Electronic Properties of MgTl

Article Preview

Abstract:

Intermetallic compounds are innovative materials and are far superior to conventional metals and alloys. These intermetallic compounds have a great potential in industrial and technological fields because most of the intermetallic compounds are stronger as well asstiffer at elevated temperature and provide far better corrosion resistance than conventional metals and alloys.Over the past few years the scientific interest in the study of these intermetallic compounds emanates greatly because of their high-tech applications. Our motivation of the present studyMgTl mainly consernedon the physical data generation in context with its possible vast applications .We used a theoretical approach within the local density approximation method to study the structural and electronic properties of MgTl by calculating total energy. As far as our calculations are concerned, the band structure shows the overlapping of conduction and valence band thus itis clear that MgTl in its pure form is a good conductor of heat and electricity and falls in the category of metals. We have also calculated lattice parameters, bulkmodules, first order derivative electronic and lattice heat coefficient and Debye temperature.

You might also be interested in these eBooks

Info:

Pages:

27-31

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.

Google Scholar

[2] W. Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133.

Google Scholar

[3] R.G. Parr, W. Yang, Density-functional Theory for Atoms and Molecules, Oxford University Press, Oxford, New York, (1989).

Google Scholar

[4] X. Tao, H. Chen, X. Li, Y. Ouyang, & S. Liao, Phys. Scr. 83 045301 1-9(2011).

Google Scholar

[5] V. Shrivastava, G. Pagare, S. P. Sanyal, &. M. Rajagopalan, First principles calculations of Al- rich RE (RE=Ho, Er, Tm and Yb ) intermetallic compounds Phys. Status Solidi B 246 (2009) 1206-1214.

DOI: 10.1002/pssb.200844352

Google Scholar

[6] Jr. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, Lo. C. Chester, Y. Ye, A. Slager, & D. Kesse, A family of ductile intermetallic compound. Nat. Mater. 2 (2003) 587-590.

DOI: 10.1038/nmat958

Google Scholar

[7] J. Pierrie, P. Morin, D. Schmitt, & B. Hennion, Magneticexitations in the cubic antiferromagnetic ErCu. Le Journal De Physique 39 (1978), 793- 797.

DOI: 10.1051/jphys:01978003907079300

Google Scholar

[8] J. W. Cable,W. C. Koehler, & E. O. Wollan, Magnetic order in rare-earth intermetallic (1964).

Google Scholar

[9] O. K. Andersen, Phys. Rev. B, Vol. 12, (1975) p.3060.

Google Scholar

[10] O. K. Andersen, O. Jepsen, Phys. Rev. Lett., (1984) Vol. 53, p.2571.

Google Scholar

[11] U. van Barth, L. Hedin, J. Phys. C, Vol. 5, (1972) 1629.

Google Scholar

[12] O. Jepsen, O.K. Andersen, Solid State Commun., Vol. 9, p.1763, (1971).

Google Scholar

[13] F. Birch, J. Geophys. Rev., Vol. 83, p.1257, (1978).

Google Scholar

[14] P. Debye, Ann. d. Physik 39 (1912) 786.

Google Scholar

[15] X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng, Z. Jin, Physica B (2007) (in Press) doi: 10. 1016/j. physb. 2007. 05. 037.

Google Scholar

[16] Vipul Srivastava, Afroj A. Khan, M. Rajagopalan, Sankar P. Sanyal, Physica B: Condensed Matter, 407 (2011) 198.

Google Scholar

[17] B. Kocak, Y.O. Ciftci, K. Colakoglu, E. Deligoz, Physica B: Condensed Matter, 406 (2011) 388.

DOI: 10.1016/j.physb.2010.10.076

Google Scholar