Properties of Thorium Compounds: Application of Interionic Potential Theory

Article Preview

Abstract:

In the present work structural and mechanical properties of ThC and ThO compounds have been carried out using desirable modified inter-ionic potential theory (MIPT), which parametrically includes the effect of Coulomb screening. The transition from rock salt to caesium chloride occurs around 40.0 GPa and 65.0 GPa in the case of ThC and ThO respectively. We have also calculated bulk (B0), Young (E), and shear moduli (G), Poisson ratio (υ) and anisotropic ratio (A) in NaCl-type structure for these compounds and differentiate them with other experimental and theoretical results which show a good agreement.

You might also be interested in these eBooks

Info:

Pages:

47-52

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Freeman, G.H. Lander, Handbook of the Physics and Chemistry of the Actinides, first ed., Amsterdam, North-Holland, 1984, pp.45-130.

Google Scholar

[2] M. Aynyas, J. Pataiya, B. S. Arya, A. Singh, and S. P. Sanyal, Structural and mechanical properties of thorium carbide J. of Physics, Con. Series 1665 (2015) 030022-030023.

DOI: 10.1063/1.4917597

Google Scholar

[3] J. M. Leger, Chalcogenides and pnictides of cerium and uranium under high pressure, Physica B 190 (1993) 84-91.

DOI: 10.1016/0921-4526(93)90447-e

Google Scholar

[4] S. Aydin, A. Tatar, Y. O. Ciftci, A theoretical study for thorium monocarbide (ThC), J. Nucl. Matter 429 (2012) 55-69.

DOI: 10.1016/j.jnucmat.2012.05.038

Google Scholar

[5] I. R. Shein, K. I. Shein, A. L. Ivanovskii, First principle study of B1 like thorium carbide nitride and oxide, J. Nucl. Mat. 353 (2006) 19-26.

DOI: 10.1016/j.jnucmat.2006.02.075

Google Scholar

[6] C. Makode and Sankar P. Sanyal, Induced Structural Phase Transition and Electronic Properties of Actinide Monophospides: Ab-Initio Calculations, Physica B: Condensed Matter 406 (2011) 3175-3179.

DOI: 10.1016/j.physb.2011.05.020

Google Scholar

[7] A. Singh, V. Srivastava, M. Aynyas, and S. P. Sanyal, High pressure structural phase transition and elastic properties of yttrium pnictides, Physica B 404 (2009) 1852-1857.

DOI: 10.1016/j.physb.2009.03.003

Google Scholar

[8] M. Aynyas, S.P. Sanyal, P.K. Jha, Structural phase transition and elastic properties of thorium pnictides at high pressure, Phys. Status Solidi B 229 (2002) 1459-1466.

DOI: 10.1002/1521-3951(200202)229:3<1459::aid-pssb1459>3.0.co;2-j

Google Scholar

[9] P. K. Jha, S. P. Sanyal, Structural phase transition and high-pressure behaviour of curium and uranium monobismuthides, J. of physics and Chemistry of Solids 64 (2003) 1237-1240.

DOI: 10.1016/s0022-3697(03)00080-5

Google Scholar

[10] P.K. Jha, S.P. Sanyal, Phonon spectrum and lattice specific heat of the HgBa 2 CuO 4 high-temperature superconductor, Physica C: Superconductivity 271 (1), 6-10 (1996).

DOI: 10.1016/s0921-4534(96)00536-9

Google Scholar

[11] P.K. Jha, S.P. Sanyal, A lattice dynamical study of the role of pressure on Raman modes in high-T c HgBa 2 CuO 4, Physica C: Superconductivity 261 (3), 259-262 (1996).

DOI: 10.1016/0921-4534(96)00148-7

Google Scholar

[12] P.K. Jha and S.P. Sanyal, Lattice vibrations in intermediate valence compounds SmS and TmSe, Indian Journal of Pure and Applied Physics 31 (1993), 469-473 (1993).

Google Scholar

[13] U. Benedict, Structural data of the actinide elements and of their binary compounds with non-metallic elements, J. Less Common Met. 128 (1987) 7-45.

DOI: 10.1016/0022-5088(87)90189-5

Google Scholar

[14] M. Born and K. Hung, Dynamical theory of crystal lattice, second ed., Clarendon, Oxford, 1954, pp.120-190.

Google Scholar