Analysis of the Structure and Thermal Stability of Cu@Si Nanoparticles

Abstract:

Article Preview

In this research core-shell Cu@Si nanoparticles were obtained through evaporation of elemental precursors by a high-powered electron beam. The structures of the particles were investigated in order to elucidate their mechanisms of formation. The thermal stability of the particles was studied with the help of molecular dynamics calculations. The parameters of the thermal stability of the composite nanoparticles Cu@Si with different size were determined. It was concluded that with the temperature increasing the diffusion of copper atoms on the surface begins, leading to a reversal of the structure and the formation of particles having a particle type Si@Cu.

Info:

Edited by:

Mikhail D. Starostenkov, Aleksandr I. Potekaev, Sergey V. Dmitriev and Prof. P. Ya. Tabakov

Pages:

52-59

Citation:

Y. Y. Gafner et al., "Analysis of the Structure and Thermal Stability of Cu@Si Nanoparticles", Journal of Metastable and Nanocrystalline Materials, Vol. 30, pp. 52-59, 2018

Online since:

January 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H-S. Han, D. Fukumura, R. K. Jain and M. G. Bawendi, Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking, Nature materials 12 (2013).

DOI: https://doi.org/10.1038/nmat3539

[2] O. Chen, L. Riedemann, et al., Magneto-fluorescent core-shell supernanoparticles, Nature communications 5 (2014) 5093.

[3] H. Wu, N. Du, H. Zhang, D. Yang, Voltage-controlled synthesis of Cu–Li2O@Si core–shell nanorod arrays as high-performance anodes for lithium-ion batteries, Journal of Materials Chemistry A 2 (2014) 20510-20514.

DOI: https://doi.org/10.1039/c4ta05098c

[4] W. Zhao, N. Du, H. Zhang, D. Yang, Silver–nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries, Journal of Power Sources 285 (2015) 131-136.

DOI: https://doi.org/10.1016/j.jpowsour.2015.03.088

[5] T. Liu, D. Li, Y. Zou, D. Yang, Li H., Y. Wu, M. Jiang, Preparation of metal@ silica core–shell particle films by interfacial self-assembly, Journal of colloid and interface science 350 (2010) 58-62.

DOI: https://doi.org/10.1016/j.jcis.2010.05.092

[6] R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and application, Chemical reviews 112 (2011) 2373-2433.

DOI: https://doi.org/10.1021/cr100449n

[7] S. Zhuo, M. Shao, L. Cheng, R. Que, D. Ma, S. T. Lee, Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires, Frontiers of Optoelectronics in China 4 (2011) 114-120.

DOI: https://doi.org/10.1007/s12200-011-0152-y

[8] Q. Yao, Z. -H. Lu, Z. Zhang, X. Chen, Y. Lan, One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane, Scientific Reports 4 (2014) 7497.

DOI: https://doi.org/10.1038/srep07597

[9] T. Liu, D. Li, Y. Zou, D. Yang, H. Li, Y. Wu, M.J. Jiang, Preparation of metal@silica core–shell particle films by interfacial self-assembly, Colloid Interface Sci. 350 (2010) 58-62.

DOI: https://doi.org/10.1016/j.jcis.2010.05.092

[10] J. Ye., B. De Broek, R. D. Palma, W. Libaers, K. Clays, W. V. Roy, G. Borghs, G. Maes, Surface morphology changes on silica-coated gold colloids, Colloids Surf. A. 322 (2008) 225-233.

DOI: https://doi.org/10.1016/j.colsurfa.2008.03.033

[11] W.F. Paxton, K.C. Kistler, Ch.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, Th.E. Mallouk, P.E. Lammert and V. H. Crespi, Catalytic Nanomotors:  Autonomous Movement of Striped Nanorods, Journal of the American Chemical Society 126 (2004).

DOI: https://doi.org/10.1021/ja047697z

[12] S. Fournier-Bidoz, A.C. Arsenault, I. Manners and G.A. Ozin, Chemical Communications 4 (2005) 441-443.

[13] H. Yu, M. Chen, Ph. M. Rice, Sh. X. Wang, R. L. White and Sh. Sun, Dumbbell-like Bifunctional Au−Fe3O4 Nanoparticles, Nano letters 5 (2005) 379-382.

DOI: https://doi.org/10.1021/nl047955q

[14] R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles, Chemical Reviews 108 (2008) P. 845-910.

DOI: https://doi.org/10.1021/cr040090g

[15] Y. Song, K. Liu, S. Chen, AgAu Bimetallic Janus Nanoparticles and Their Electrocatalytic Activity for Oxygen Reduction in Alkaline Media, Langmuir 28 (2012) 17143-17152.

DOI: https://doi.org/10.1021/la303513x

[16] A. V. Nomoev, S. P. Bardakhanov, M. Schreiber, D. G. Bazarova, N. A. Romanov, B. B. Baldanov, B. R. Radnaev, V. V. Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein journal of nanotechnology 6 (2015).

DOI: https://doi.org/10.3762/bjnano.6.89

[17] Y. Chushak, L.S. Bartell, Molecular dynamics simulations of the freezing of gold nanoparticles, J. Eur. Phys. D. 16 (2001) 43-46.

DOI: https://doi.org/10.1007/s100530170056

[18] S. Iijima and T. Ichihashi, Structural instability of ultrafine particles of metals, J. Phys. Rev. Lett. 56 (1986) 616.

DOI: https://doi.org/10.1103/physrevlett.56.616

[19] S. Sugano, H. Koizumi, Microcluster Physics. Springer Series in Materials Science, Springer Verlag, Berlin, (1998).

DOI: https://doi.org/10.1007/978-3-642-58926-3

[20] P. Moriarty, Nanostructured materials, J. Rep. Prog. Phys. 64 (2001) 297-381.

[21] R. Kofman, P. Cheyssac, Y. Lereah and A. Stella, Melting of cluster approaching 0D, J. Eur. Phys. D. 3 (1999) 441-444.

DOI: https://doi.org/10.1007/s100530050475

[22] A. Pundt, M. Dornheim, M. Guerdane H. Teichler, H. Ehrenberg, M.T. Reetz, N.M. Jisrawi, Evidence for a cubic-to-icosahedral transition of quasi free Pd-H clusters controlled by the hydrogen content, J. Eur. Phys. D. 19 (2002) 333-337.

DOI: https://doi.org/10.1140/epjd/e20020080

[23] L.D. Marks, Experimental studies of small particle structures, J. Rep. Prog. Phys. 57 (1994) 603-649.

[24] J.A. Ascencio, M. Perez and M. Jose-Yacaman, A truncated icosahedral structure observed in gold nanoparticles, J. Surf. Sci. 447 (2000) 73-80.

DOI: https://doi.org/10.1016/s0039-6028(99)01112-7

[25] T.P. Martin, Shells of atoms, J. Phys. Reports 273 (1996) 199-241.

[26] J.M. Soler, M.R. Beltran, K. Michaelian, I.L. Garzon, P. Ordejon, D. Sanchez-Portal, E. Artacho, Metallic bonding and cluster structure, J. Phys. Rev. B61 (2000) 5771.

DOI: https://doi.org/10.1103/physrevb.61.5771

[27] C.L. Cleveland, W.D. Luedike, U. Landman, Melting of gold clusters: icosahedral precursours, Phys. Rev. Lett. 81 (1998) (2036).

DOI: https://doi.org/10.1103/physrevlett.81.2036

[28] K. Mannien and M. Mannien, Stacking faults in close-packed clusters, J. Eur. Phys. D 20 (2002) 243-249.

[29] V. V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Recent progress on synthesis of ceramic core/shell nanostructures, Processing and Application of Ceramics 7 (2013) 45-62.

[30] M.J. Kim, Y.H. Chao, D.H. Kim, K.H. Kim, Magnetic Behaviors of Surface Modified Superparamagnetic Magnetite Nanoparticles, Magn. IEEE Trans. 45 (2009) 2446-2449.

DOI: https://doi.org/10.1109/tmag.2009.2018606

[31] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Physical Review B. 85 (2012) 245102.

DOI: https://doi.org/10.1103/physrevb.85.245102

[32] C. A. Cruz, P. Chantrenne, R. G. A. Veiga, M. Perez, X. Kleber, Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study, Journal of Applied Physics 113 (2013) 023710.

DOI: https://doi.org/10.1063/1.4773455