Analysis of the Structure and Thermal Stability of Cu@Si Nanoparticles

Article Preview

Abstract:

In this research core-shell Cu@Si nanoparticles were obtained through evaporation of elemental precursors by a high-powered electron beam. The structures of the particles were investigated in order to elucidate their mechanisms of formation. The thermal stability of the particles was studied with the help of molecular dynamics calculations. The parameters of the thermal stability of the composite nanoparticles Cu@Si with different size were determined. It was concluded that with the temperature increasing the diffusion of copper atoms on the surface begins, leading to a reversal of the structure and the formation of particles having a particle type Si@Cu.

You might also be interested in these eBooks

Info:

Pages:

52-59

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H-S. Han, D. Fukumura, R. K. Jain and M. G. Bawendi, Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking, Nature materials 12 (2013).

DOI: 10.1038/nmat3539

Google Scholar

[2] O. Chen, L. Riedemann, et al., Magneto-fluorescent core-shell supernanoparticles, Nature communications 5 (2014) 5093.

Google Scholar

[3] H. Wu, N. Du, H. Zhang, D. Yang, Voltage-controlled synthesis of Cu–Li2O@Si core–shell nanorod arrays as high-performance anodes for lithium-ion batteries, Journal of Materials Chemistry A 2 (2014) 20510-20514.

DOI: 10.1039/c4ta05098c

Google Scholar

[4] W. Zhao, N. Du, H. Zhang, D. Yang, Silver–nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries, Journal of Power Sources 285 (2015) 131-136.

DOI: 10.1016/j.jpowsour.2015.03.088

Google Scholar

[5] T. Liu, D. Li, Y. Zou, D. Yang, Li H., Y. Wu, M. Jiang, Preparation of metal@ silica core–shell particle films by interfacial self-assembly, Journal of colloid and interface science 350 (2010) 58-62.

DOI: 10.1016/j.jcis.2010.05.092

Google Scholar

[6] R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and application, Chemical reviews 112 (2011) 2373-2433.

DOI: 10.1021/cr100449n

Google Scholar

[7] S. Zhuo, M. Shao, L. Cheng, R. Que, D. Ma, S. T. Lee, Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires, Frontiers of Optoelectronics in China 4 (2011) 114-120.

DOI: 10.1007/s12200-011-0152-y

Google Scholar

[8] Q. Yao, Z. -H. Lu, Z. Zhang, X. Chen, Y. Lan, One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane, Scientific Reports 4 (2014) 7497.

DOI: 10.1038/srep07597

Google Scholar

[9] T. Liu, D. Li, Y. Zou, D. Yang, H. Li, Y. Wu, M.J. Jiang, Preparation of metal@silica core–shell particle films by interfacial self-assembly, Colloid Interface Sci. 350 (2010) 58-62.

DOI: 10.1016/j.jcis.2010.05.092

Google Scholar

[10] J. Ye., B. De Broek, R. D. Palma, W. Libaers, K. Clays, W. V. Roy, G. Borghs, G. Maes, Surface morphology changes on silica-coated gold colloids, Colloids Surf. A. 322 (2008) 225-233.

DOI: 10.1016/j.colsurfa.2008.03.033

Google Scholar

[11] W.F. Paxton, K.C. Kistler, Ch.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, Th.E. Mallouk, P.E. Lammert and V. H. Crespi, Catalytic Nanomotors:  Autonomous Movement of Striped Nanorods, Journal of the American Chemical Society 126 (2004).

DOI: 10.1002/chin.200452205

Google Scholar

[12] S. Fournier-Bidoz, A.C. Arsenault, I. Manners and G.A. Ozin, Chemical Communications 4 (2005) 441-443.

DOI: 10.1039/b414896g

Google Scholar

[13] H. Yu, M. Chen, Ph. M. Rice, Sh. X. Wang, R. L. White and Sh. Sun, Dumbbell-like Bifunctional Au−Fe3O4 Nanoparticles, Nano letters 5 (2005) 379-382.

DOI: 10.1021/nl047955q

Google Scholar

[14] R. Ferrando, J. Jellinek, R. L. Johnston, Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles, Chemical Reviews 108 (2008) P. 845-910.

DOI: 10.1021/cr040090g

Google Scholar

[15] Y. Song, K. Liu, S. Chen, AgAu Bimetallic Janus Nanoparticles and Their Electrocatalytic Activity for Oxygen Reduction in Alkaline Media, Langmuir 28 (2012) 17143-17152.

DOI: 10.1021/la303513x

Google Scholar

[16] A. V. Nomoev, S. P. Bardakhanov, M. Schreiber, D. G. Bazarova, N. A. Romanov, B. B. Baldanov, B. R. Radnaev, V. V. Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein journal of nanotechnology 6 (2015).

DOI: 10.1515/nano.bjneah.6.89

Google Scholar

[17] Y. Chushak, L.S. Bartell, Molecular dynamics simulations of the freezing of gold nanoparticles, J. Eur. Phys. D. 16 (2001) 43-46.

DOI: 10.1007/s100530170056

Google Scholar

[18] S. Iijima and T. Ichihashi, Structural instability of ultrafine particles of metals, J. Phys. Rev. Lett. 56 (1986) 616.

DOI: 10.1103/physrevlett.56.616

Google Scholar

[19] S. Sugano, H. Koizumi, Microcluster Physics. Springer Series in Materials Science, Springer Verlag, Berlin, (1998).

Google Scholar

[20] P. Moriarty, Nanostructured materials, J. Rep. Prog. Phys. 64 (2001) 297-381.

Google Scholar

[21] R. Kofman, P. Cheyssac, Y. Lereah and A. Stella, Melting of cluster approaching 0D, J. Eur. Phys. D. 3 (1999) 441-444.

DOI: 10.1007/978-3-642-88188-6_88

Google Scholar

[22] A. Pundt, M. Dornheim, M. Guerdane H. Teichler, H. Ehrenberg, M.T. Reetz, N.M. Jisrawi, Evidence for a cubic-to-icosahedral transition of quasi free Pd-H clusters controlled by the hydrogen content, J. Eur. Phys. D. 19 (2002) 333-337.

DOI: 10.1140/epjd/e20020080

Google Scholar

[23] L.D. Marks, Experimental studies of small particle structures, J. Rep. Prog. Phys. 57 (1994) 603-649.

DOI: 10.1088/0034-4885/57/6/002

Google Scholar

[24] J.A. Ascencio, M. Perez and M. Jose-Yacaman, A truncated icosahedral structure observed in gold nanoparticles, J. Surf. Sci. 447 (2000) 73-80.

DOI: 10.1016/s0039-6028(99)01112-7

Google Scholar

[25] T.P. Martin, Shells of atoms, J. Phys. Reports 273 (1996) 199-241.

Google Scholar

[26] J.M. Soler, M.R. Beltran, K. Michaelian, I.L. Garzon, P. Ordejon, D. Sanchez-Portal, E. Artacho, Metallic bonding and cluster structure, J. Phys. Rev. B61 (2000) 5771.

DOI: 10.1103/physrevb.61.5771

Google Scholar

[27] C.L. Cleveland, W.D. Luedike, U. Landman, Melting of gold clusters: icosahedral precursours, Phys. Rev. Lett. 81 (1998) (2036).

DOI: 10.1103/physrevlett.81.2036

Google Scholar

[28] K. Mannien and M. Mannien, Stacking faults in close-packed clusters, J. Eur. Phys. D 20 (2002) 243-249.

Google Scholar

[29] V. V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Recent progress on synthesis of ceramic core/shell nanostructures, Processing and Application of Ceramics 7 (2013) 45-62.

Google Scholar

[30] M.J. Kim, Y.H. Chao, D.H. Kim, K.H. Kim, Magnetic Behaviors of Surface Modified Superparamagnetic Magnetite Nanoparticles, Magn. IEEE Trans. 45 (2009) 2446-2449.

DOI: 10.1109/tmag.2009.2018606

Google Scholar

[31] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Physical Review B. 85 (2012) 245102.

DOI: 10.1103/physrevb.85.245102

Google Scholar

[32] C. A. Cruz, P. Chantrenne, R. G. A. Veiga, M. Perez, X. Kleber, Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study, Journal of Applied Physics 113 (2013) 023710.

DOI: 10.1063/1.4773455

Google Scholar