Photoluminescence and Supercapacitive Properties of Carbon Dots Nanoparticles: A Review

Article Preview

Abstract:

Carbon Dots (CDs) have gained the attention of many researchers since its discovery in 2004 due to their unique nanostructure and properties. These are very promising carbonaceous nanomaterials having wide range of applications in sensors, imaging, energy storage, nanomedicine, electrocatalysis and optoelectronics. CDs have shown excellent physical and chemical properties like, high crystallization, good dispersibility and photoluminescence. Besides, these are now known to have excellent biocompatibility, long-term chemical stability, cost-effectiveness and negligible toxicity. Due to favourable physical structure and chemical characteristics, these nanocarbon-based materials have drawn an interest as supercapacitor (SC) electrode materials, opening upnew opportunities to increase the energy density and lifespan of SCs. Thus, variety of quick and affordable methods i.e., the arc-discharge method, microwave pyrolysis, hydrothermal method, and electrochemical synthesis have been developed to synthesize this versatile nanomaterial. There are undoubtedly many methods for creating CDs that are effective and affordable, but due to the safety and simplicity of synthesis, CDs made from waste or using environmentally friendly methods have been innovated. In order to devise sustainable chemical strategies for CDs, green synthetic methodologies based on "top-down" and "bottom-up" strategies have been prioritised. This review summarizes numerous synthetic strategies and studies that are essential for the creation of environment friendly processes for CDs. The recent developments in the use of CDs for photoluminescence and supercapacitance have been highlighted providing a clear understanding of the new source of energy and optoelectronic materials with a futuristic perspective.

You might also be interested in these eBooks

Info:

Pages:

1-22

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Schneider, C. J. Reckmeier, Y. Xiong, M. von Seckendorff, A. S. Susha, P. Kasak and A. L. Rogach, Molecular Fluorescence in Citric Acid-Based Carbon Dots, J. Phys. Chem. C 3. 121 (2017) 2014–2022.

DOI: 10.1021/acs.jpcc.6b12519

Google Scholar

[2] Y. Fang, C. Bi, D. Wang and J. Huang, The Functions of Fullerenes in Hybrid Perovskite Solar Cells, ACS Energy Lett. 2 (2017) 782–794.

DOI: 10.1021/acsenergylett.6b00657

Google Scholar

[3] Y. Gao, Y. Ma, Q. An, V. Levitas, Y. Zhang, B. Feng, J. Chaudhuri and W. A. Goddard, Shear driven formation of nano-diamonds at sub-gigapascals and 300 K, Carbon. 146 (2019) 364–368.

DOI: 10.1016/j.carbon.2019.02.012

Google Scholar

[4] S. Peng, L. Li, J. Kong Yoong Lee, L. Tian, M. Srinivasan, S. Adams and S. Ramakrishna, Electrospun carbon nano fibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Ener. 22 (2016) 361–395.

DOI: 10.1016/j.nanoen.2016.02.001

Google Scholar

[5] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (2004) 12736–12737.

DOI: 10.1021/ja040082h

Google Scholar

[6] F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang and Z. Bai, The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review, Mikrochim. Acta. 186 (2019) 583.

DOI: 10.1007/s00604-019-3688-y

Google Scholar

[7] L. Xu, J. Li, L. Li, Z. Luo, Y. Xiang, W. Deng, G. Zou, H. Hou and X. Ji, Carbon Dots Evoked Li Ion Dynamics for Solid State Battery, Small. 17 (2021) 2102978.

DOI: 10.1002/smll.202102978

Google Scholar

[8] Y. Zhou, D. Benetti, X. Tong, L. Jin, Z. M. Wang, D. Ma, H. Zhao and F. Rosei, Colloidal carbon dots based highly stable luminescent solar concentrators, Nano Ener. 44 (2018) 378–387.

DOI: 10.1016/j.nanoen.2017.12.017

Google Scholar

[9] B. Ju, Y. Wang, Y. M. Zhang, T. Zhang, Z. Liu, M. Li and S. Xiao-An Zhang, Photostable and Low-Toxic YellowGreen Carbon Dots for Highly Selective Detection of Explosive 2,4,6-Trinitrophenol Based on the Dual Electron Transfer Mechanism, ACS Appl. Mater. Interfac., 10 (2018) 13040–13047.

DOI: 10.1021/acsami.8b02330

Google Scholar

[10] M. Langer, M. Paloncyova, M. Medve, M. Pykal, D. Nachtigallová, B. Shi, A. J. A. Aquino, H. Lischka, M. Otyepka, Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations, App. Mater. Today. 22 (2021) 100924.

DOI: 10.1016/j.apmt.2020.100924

Google Scholar

[11] F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan and S. Yang, Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes, Adv. Mater. 29 (2017) 1604436.

DOI: 10.1002/adma.201604436

Google Scholar

[12] X. Liu, D. Benetti, F. Rosei, Semi-transparent luminescent solar concentrators based on plasmonenhanced carbon dots, J. Mater. Chem. A. 9 (2021) 23345–23352.

DOI: 10.1039/d1ta02295d

Google Scholar

[13] D. Li, E. V. Ushakova, A. L. Rogach and S. Qu, Optical Properties of Carbon Dots in the Deep-Red to NearInfrared Region Are Attractive for Biomedical Applications, Small. 17 (2021) 2102325.

DOI: 10.1002/smll.202102325

Google Scholar

[14] X. Gao, X. Ma, X. Han, X. Wang, S. Li, J. Yao, W. Shi, Synthesis of carbon dot-ZnO-based nanomaterials for antibacterial application, New J. Chem., 45 (2021) 4496– 4505.

DOI: 10.1039/d0nj05741j

Google Scholar

[15] H. Luo, S. Dimitrov, M. Daboczi, J.S. Kim, Q. Guo, Y. Fang, M.A. Stoeckel, P. Samor`ı, O. Fenwick, A.B. Jorge Sobrido, X. Wang and M.M. Titirici, Nitrogen-Doped Carbon Dots/ TiO2 Nanoparticle Composites for Photoelectrochemical Water Oxidation, ACS Appl. Nano Mater. 3 (2020) 3371– 3381.

DOI: 10.1021/acsanm.9b02412

Google Scholar

[16] B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, R. Deng and X. Liu, Rare-Earth Doping in Nanostructured Inorganic Materials, Chem. Rev. 122 (2022) 5519–5603.

DOI: 10.1021/acs.chemrev.1c00644

Google Scholar

[17] H. Wang, X. Liang, J. Wang, S. Jiao and D. Xue, Multifunctional inorganic nanomaterials for energy applications, Nanoscale. 12 (2020) 14–42.

DOI: 10.1039/c9nr07008g

Google Scholar

[18] J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar and P. Kumar, 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnol., 16 (2018) 84.

DOI: 10.1186/s12951-018-0408-4

Google Scholar

[19] V. Adimule, B.C. Yallur, V. Kamat, P.M. Krishna, Characterization studies of novel series of cobalt (II) nickel (II) and copper (II) complexes: DNA binding and antibacterial activity, J. Pharma. Invest. 51 (2021) 347-359.

DOI: 10.1007/s40005-021-00524-0

Google Scholar

[20] V.M. Adimule, S.S. Nandi, S.S. Kerur et al., Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review, Top. Catal. (2022).

DOI: 10.1007/s11244-022-01571-z

Google Scholar

[21] R. Keri, M. Patil, V.P. Brahmkhatri et al., Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates, Top Catal (2022)

DOI: 10.1007/s11244-021-01556-4

Google Scholar

[22] V. Adimule, B.C. Yallur, M. Challa, R.S. Joshi, Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices, Heli. (2021) e08541.

DOI: 10.1016/j.heliyon.2021.e08541

Google Scholar

[23] V. Adimule, S.S. Nandi, A.H.J. Gowda, Enhanced power conversion efficiency of the P3BT (poly-3-butyl thiophene) doped nanocomposites of GdTiO3 as working electrode, Techno. Soci. 2020 (2021) 55-68.

DOI: 10.1007/978-3-030-69925-3_6

Google Scholar

[24] S.S. Nandi, A. Suryavanshi, V. Adimule, S.R. Maradur, Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr 0.5 Cu 0.4 Y 0.1 and Sr 0.5 Mn 0.5 and their electronic sensor applications, AIP Conference Proceedings, 2274 (2020) 020006.

DOI: 10.1063/5.0022453

Google Scholar

[25] V. Adimule, A. Suryavanshi, B.C. Yallur, S.S. Nandi, A Facile Synthesis of poly (3‐ octylthiophene): Ni 0 4 Sr0 6TiO3 hybrid nanocomposites for solar cell applications. Macromol. Sym., 392 (2020) 2000001-7.

DOI: 10.1002/masy.202000001

Google Scholar

[26] K. P. Divya, R. Karthikeyan, B. Sinduja, A. Anancia Grace, S. A. John, J. H. Hahn and V. Dharuman, Carbon dots stabilized silver-lipid nano hybrids for sensitive label free DNA detection, Biosens. Bioelectron. 133 (2019) 48–54.

DOI: 10.1016/j.bios.2019.03.027

Google Scholar

[27] L. Wang, X. Wu, S. Guo, M. Han, Y. Zhou, Y. Sun, H. Huang, Y. Liu and Z. Kang, Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution, J. Mater. Chem. A. 5 (2017) 2717– 2723.

DOI: 10.1039/c6ta09580a

Google Scholar

[28] M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, S. Tao, J. Liu and B. Yang, Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications, Nano. Today. 19 (2018) 201–218.

DOI: 10.1016/j.nantod.2018.02.008

Google Scholar

[29] R.T. Guo, L. Li, B.W. Wang, Y.G. Xiang, G.Q. Zou, Y.R. Zhu, H.S. Hou, X.B. Ji, Functionalized carbon dots for advanced batteries. Ener. Stor. Mater. 37 (2021) 8.

DOI: 10.1016/j.ensm.2021.01.020

Google Scholar

[30] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature. 318 (1985) 162–163.

DOI: 10.1038/318162a0

Google Scholar

[31] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56–58.

DOI: 10.1038/354056a0

Google Scholar

[32] Y.L. Chen, L.H. Du, P.H. Yang, P. Sun, X. Yu, W.J. Ma, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole, J. Pow. Sour. 287 (2015) 68–74.

DOI: 10.1016/j.jpowsour.2015.04.026

Google Scholar

[33] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669

DOI: 10.1126/science.1102896

Google Scholar

[34] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438 (2005) 197.

DOI: 10.1038/nature04233

Google Scholar

[35] S.Y. Wang, K. Neerav, C.G. Eduardo, X.L. Feng, M. Klaus, M. Vincent, F. Roman, R. Pascal, Quantum dots in graphene nanoribbons, Nano Lett. 17 (2017) 4277.

Google Scholar

[36] S. Bak, D.Y. Kim, H.Y. Lee, Graphene quantum dots and their possible energy applications: a review, Curr. Appl. Phys. 16 (2016) 1192.

Google Scholar

[37] S.Y. Lim, W. Shen, Z.Q. Gao, Carbon quantum dots and their applications, Chem Soc Rev. 44 (2015) 362.

Google Scholar

[38] E. Abdelhakim, C.Q. Jesica, F.V. Jose, F. Agustin, C. Perez, J.M. Francisco, C.M. Francisco, Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors, Chem. Eng. J. 334 (2018) 18351841.

Google Scholar

[39] B.J. Zhu, B. Liu, C. Qu, H. Zhang, W.H. Guo, Z.B. Liang, F. Chen, R.Q. Zou, Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres, J. Mater. Chem. A. 6 (2018) 1523.

DOI: 10.1039/c7ta09608a

Google Scholar

[40] X.F. Chen, J.Y. Zhang, B. Zhang, S.M. Dong, X.C. Guo, X.D. Mu, B.H. Fei, A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor, Sci Rep. 7 (2017) 7362.

DOI: 10.1038/s41598-017-06730-x

Google Scholar

[41] X. Zhou, P.L. Wang, Y.G. Zhang, L.L. Wang, L.T. Zhang, L. Zhang, L. Xu, L. Liu, Biomass based nitrogen-doped structure-tunable versatile porous carbon materials, J. Mater. Chem. A. 5 (2017) 12958.

DOI: 10.1039/c7ta02113e

Google Scholar

[42] W.J. Liu, K. Tian, L.L. Ling, H.Q. Yu, H. Jiang, Use of nutrient rich hydrophytes to create N, P-dually doped porous carbon with robust energy storage performance. Environ. Sci. Technol. 50 (2016) 12421.

DOI: 10.1021/acs.est.6b03051

Google Scholar

[43] X.J. Wei, Y.B. Li, S.Y. Gao, Correction: Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J Mater Chem A. 5 (2017) 181.

DOI: 10.1039/c6ta07826e

Google Scholar

[44] D.D. Shan, J. Yang, W. Liu, J. Yan, Z.J. Fan, Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors, J. Mater. Chem. A. 4 (2016) 13589.

DOI: 10.1039/c6ta05406d

Google Scholar

[45] D.M. Kang, Q.L. Liu, J.J. Gu, Y.S. Su, W. Zhang, D. Zhang. ''Egg-Box''-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano. 9 (2015) 11225.

DOI: 10.1021/acsnano.5b04821

Google Scholar

[46] C. Chen, D.F. Yu, G.Y. Zhao, B.S. Du, W. Tang, L. Sun, Y. Sun, B. Flemming, M. Yu, Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors, Nano Energy. 27 (2016) 377.

DOI: 10.1016/j.nanoen.2016.07.020

Google Scholar

[47] L.F. Chen, Y. Feng, H.W. Liang, Z.Y. Wu, S.H. Yu, Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices, Adv. Energy Mater. 7 (2017) 01700826.

DOI: 10.1002/aenm.201700826

Google Scholar

[48] M. Sevilla, G.A. Ferrero, A.B. Fuertes. One-pot synthesis of biomass-based hierarchical porous carbons with a large porosity development. Chem Mater. 29 (2017) 6900.

DOI: 10.1021/acs.chemmater.7b02218

Google Scholar

[49] R.R. Kumar, S.E. Arasi, S. Sudhahar, N. Nallamuthu, P. Devendran, P. Lakshmanan, M.K. Kumar, Enhanced electrochemical studies of ZnO/CNT nanocomposite for supercapacitor devices, Phys. Condens. Matter. 568 (2019) 51.

DOI: 10.1016/j.physb.2019.05.025

Google Scholar

[50] J.T. Zhang, J.W. Jiang, X.S. Zhao, Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets, J. Phys. Chem. C. 115(2011) 6448.

DOI: 10.1021/jp200724h

Google Scholar

[51] X. Wang, X.L. Liu, K. Chen, Effect of different conductive additives on the electrochemical properties of mesoporous MnO2 nanotubes. Int J Electrochem Sci. 11 (2016) 6808.

DOI: 10.20964/2016.08.26

Google Scholar

[52] J. Kim, W. Khoh, B. Wee, J. Hong, Fabrication of flexible reduced graphene oxide-TiO2 freestanding films for supercapacitor application. RSC Adv. 5(2015) 9904.

DOI: 10.1039/c4ra12980f

Google Scholar

[53] Y.P. Liu, T.T. Gao, H. Xiao, W.J. Guo, B. Sun, M.S. Pei, G.W. Zhou. One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-eflciency dye adsorbents. Electrochim Acta. 229 (2017) 239.

DOI: 10.1016/j.electacta.2017.01.142

Google Scholar

[54] H.Q. Zhang, Z.Q. Hu, M. Li, L.W. Hu, S.Q. Jiao. A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J Mater Chem A. 2 (2014) 17024.

DOI: 10.1039/c4ta03369h

Google Scholar

[55] O.Y. Tian, K. Cheng, F. Yang, L.M. Zhou, K. Zhu, K. Ye, G.L. Wang, D.X. Cao. From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J Mater Chem A. 5 (2017) 14551.

DOI: 10.1039/c7ta02412f

Google Scholar

[56] Y. Liu, Z.J. Shi, Y.F. Gao, W.D. An, Z.Z. Cao, G.R. Liu. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces. 8 (2016) 28283.

DOI: 10.1021/acsami.5b11558

Google Scholar

[57] L.L. Jiang, L.Z. Sheng, X. Chen, T. Wei, Z.J. Fan. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J Mater Chem A. 4 (2016) 11388.

DOI: 10.1039/c6ta02570f

Google Scholar

[58] J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 9 (2015) 2556–2564

DOI: 10.1021/nn506394r

Google Scholar

[59] H.L. Wang, Z.W. Xu, Z. Li, K. Alireza, C. Cui, X.H. Tan, T.J. Stephenson, K. Cecil, H. Chris, O. Brian, K.T. Jin, H. Don, A. Anthony, M. David. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with highenergy. ACS Nano.7 (2013) 5131.

DOI: 10.1021/nn400731g

Google Scholar

[60] L. Sun, C.G. Tian, M.T. Li, X.Y. Meng, L. Wang, R.H. Wang, J. Yin, H.G. Fu. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A. 1 (2013) 6462.

DOI: 10.1039/c3ta10897j

Google Scholar

[61] J.H. Hou, C.B. Cao, X.L. Ma, F. Idress, B. Xu, X. Hao, W. Lin. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon. Sci Rep. 4 (2014) 7260.

DOI: 10.1038/srep07260

Google Scholar

[62] E. Arkan, A. Barati, A. Rahmanpanah, L. Hosseinzadeh, S. Moradi, M. Hajialyani, Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Adv. Pharm. Bull. 8 (2018) 149.

DOI: 10.15171/apb.2018.018

Google Scholar

[63] D. Bano, V. Kumar, V.K. Singh, S.H. Hasan, Green synthesis of fluorescent carbon quantum dots for the detection of mercury (ii) and glutathione. New J. Chem. 42 (2018) 5814

DOI: 10.1039/C8NJ00432C

Google Scholar

[64] V.N. Mehta, S. Jha, S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater. Sci. Eng. C. 2014, 38 (2014) 20

DOI: 10.1016/j.msec.2014.01.038

Google Scholar

[65] R. Qiang, S. Yang, K. Hou, J. Wang, Synthesis of carbon quantum dots with green luminescence from potato starch. New J. Chem. 43 (2019) 10826

DOI: 10.1039/C9NJ02291K

Google Scholar

[66] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review. Mater. Today Chem. 8 (2018) 96

DOI: 10.1016/j.mtchem.2018.03.003

Google Scholar

[67] C. Huang, H. Dong, Y. Su, Y. Wu, R. Narron, Q. Yong, Synthesis of Carbon Quantum Dot Nanoparticles Derived from Byproducts in Bio-Refinery Process for Cell Imaging and In Vivo Bioimaging. Nanomater. 9 (2019) 387

DOI: 10.3390/nano9030387

Google Scholar

[68] V. Adimule, B.C. Yallur, D. Bhowmik, A.H. Gowda, Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Trans. Elec. & Elec. Mater. (2021) 1-16.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[69] V. Adimule, D. Bhowmik, A. Suryavanshi, Synthesis characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties In IOP Conference Series. Mater. Sci. Eng. 577 No 1:p.012032 IOP Publishing.

DOI: 10.1088/1757-899X/577/1/012032

Google Scholar

[70] V. Adimule, P. Banakar, V.H. Naik, Preparation characterization and optical properties of chromium oxide and yttrium nanocomposites In AIP Conference Proceedings. 2018 (Vol 1989 No 1 p.020001) AIP Publishing LLC.

DOI: 10.1063/1.5047677

Google Scholar

[71] V. Adimule, Synthesis characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties In AIP Conference Proceedings. (2018) (Vol 1989 1: 030001) AIP Publishing LLC.

DOI: 10.1063/1.5047719

Google Scholar

[72] V. Adimule, S.S. Nandi, H.J. Adarsha, A Facile Synthesis of Cr Doped WO3 Nanostructures Study of their Current-Voltage Power Dissipation and Impedance Properties of Thin Films. J. Nano. Res. 67 (2021) 33-42.

DOI: 10.4028/www.scientific.net/JNanoR.67.33

Google Scholar

[73] V. Adimule, B.C. Yallur, M. Challa, R.S. Joshi, Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heli. (2021) e08541.

DOI: 10.1016/j.heliyon.2021.e08541

Google Scholar

[74] V. Adimule, S.S. Nandi, A.H.J. Gowda, Enhanced power conversion efficiency of the P3BT (poly-3-butyl thiophene) doped nanocomposites of GdTiO3 as working electrode. In Techno-Societal (2021) 55-68.

DOI: 10.1007/978-3-030-69925-3_6

Google Scholar

[75] V. Adimule, B.C. Yallur, S.R. Batakurki, A.H.J. Gowda, Microwave assisted synthesis of Cr doped Gd2O3 nanostructures and investigation on morphology optical photoluminescence properties nanoscience and technology: An Internat. J. (2021).

DOI: 10.1615/nanoscitechnolintj.2021039643

Google Scholar

[76] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical structural and morphological characteristics. Mater. Tod. Chem. 20 (2021) 438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[77] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Optical structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by co precipitation Method Journal of Fluorescence. 31 (2021) 487-499.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[78] V. Adimule, B. C. Yallur, D. Bhowmik, A. H. J. Gowda, Morphology structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures J. Mater. Sci. Mater. Electr. 32 (2021) 2164–12181.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[79] V. Adimule, P. Vageesha, G. Bagihalli, D. Bowmik, H.J. Adarsha, Synthesis characterization of hybrid nanomaterials of strontium yttrium copper doped with indole schiff base derivatives possessing dielectric and semiconductor properties. Emer. Res. Elect. Comp. Sci. Tech., (2019) 1131–1140.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[80] V. Adimule, A. Suryavanshi, B.C. Yallur, S.S. Nandi, A Facile Synthesis of poly (3‐ octylthiophene): Ni 0 4 Sr0 6TiO3 hybrid nanocomposites for solar cell applications, Macromol. Symp. 392 (2020) 2000001-7.

DOI: 10.1002/masy.202000001

Google Scholar

[81] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K.R. Walter, A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126 (2004) 12736

DOI: 10.1021/ja040082h

Google Scholar

[82] L. Xiao, H. Sun, Novel properties and applications of carbon nanodots. Nanoscale Horiz. 3 (2018) 565. https://doi.org/10. 1039/C8NH00106E

Google Scholar

[83] Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C. 2 (2014) 6921. https://doi.org/10. 1039/C4TC00988F

Google Scholar

[84] X. Wang, G. Feng, P. Dong, J. Huang, A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 7 (2019) 671.

DOI: 10.3389/fchem.2019.00671

Google Scholar

[85] L. Haitao, K. Zhenhui, L. Yang, L.S. Tong, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22 (2012) 24230.

Google Scholar

[86] G. Muthusankar, R. Sasikumar, S.M. Chen, G. Gopu, N. Sengottuvelan, S.P. Rwei, Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries J. Colloid Interface Sci. 523 (2018) 191-200.

DOI: 10.1016/j.jcis.2018.03.095

Google Scholar

[87] L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pan, Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Adv. Mater. 23 (2011) 5801. https://doi.org/10.1002/adma. 201102866

DOI: 10.1002/adma.201102866

Google Scholar

[88] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E. P. Giannelis, Surface Functionalized Carbogenic Quantum Dots. Small. 4 (2008) 455. https://doi.org/10. 1002/smll.200700578

DOI: 10.1002/smll.200700578

Google Scholar

[89] C. Ma, C. Yin, Y. Fan, X. Yang, X. Zhou, J. Mater. Sci. 54 (2019) 9372

DOI: 10.1007/s10853-019-03585-7

Google Scholar

[90] F. Wang, M. Kreiter, B. He, S. Pang, C.Y. Liu, Chem. Commun. 46 (2010) 3309.

Google Scholar

[91] G. Jeong, J.M. Lee, J. ah Lee, J. Praneerad, C.A. Choi, P. Supchocksoonthorn, A.K. Roy, W.S. Chae, P. Paoprasert, M.K. Yeo, G. Murali, S.Y. Park, D.K. Lee, I. Ina, Appl. Surf. Sci. 542 (2021) 148471

DOI: 10.1016/j.apsusc.2020.148471

Google Scholar

[92] X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Chem. Commun. 48 (2012) 7955

DOI: 10.1039/C2CC33869F

Google Scholar

[93] A.S.K. Zaman, T. L. Tan, Y.A.P. Chowmasundaram, N. Jamaludin, A.R. Sadrolhosseini, U. Rashid, S. A. Rashid, Opt. Mater. 112 (2021) 110801.

DOI: 10.1016/j.optmat.2021.110801

Google Scholar

[94] S. Sun, L. Zhang, K. Jiang, A. Wu, H. Lin, Chem. Mater. 28 (2016) 8659

DOI: 10.1021/acs.chemmater.6b03695

Google Scholar

[95] S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2 (2012) 3602. https://doi.org/10.1039/ C2RA00030J

DOI: 10.1039/c2ra00030j

Google Scholar

[96] M.P. Sk, A. Chattopadhyay, Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor. RSC Adv. 4 (2014) 31994. https://doi. org/

DOI: 10.1039/C4RA04264F

Google Scholar

[97] C. Liu, P. Zhang, X. Zhai, F. Tian, W. Li, J. Yang, Y. Liu, H. Wang, W. Wang, W. Liu, Biomaterials. 33 (2012) 3604.

Google Scholar

[98] S. Mitra, S. Chandra, P. Patra, P. Pramanik, A. Goswami, J. Mater. Chem. 21 (2011) 17638

DOI: 10.1039/C1JM13858H

Google Scholar

[99] Z.G. Gu, D.J. Li, C. Zheng, Y. Kang, C. Woll, J. Zhang, Angew. Chem. Int. Ed. 56 (2017) 6853. https://doi.org/10.1002/anie. 201702162

Google Scholar

[100] A. J. Amali, H. Hoshino, C. Wu, M. Ando, Q. Xu, Chem. A Eur. J. 20 (2014) 8279

DOI: 10.1002/chem.201402982

Google Scholar

[101] X. Li, J. Zhang, Y. Han, M. Zhu, S. Shang, W. Li, J. Mater. Sci. 53 (2018) 4913

DOI: 10.1007/s10853-017-1951-3

Google Scholar

[102] Z.L. Wu, P. Zhang, M.X. Gao, C.F. Liu, W. Wang, F. Leng, C.Z. Huang, J. Mater. Chem. B. 1 (2013) 2868. https://doi.org/10.1039/ C3TB20418A

Google Scholar

[103] B. Wang, W. Tang, H. Lu, Z. Huang, J. Mater. Sci. 50 (2015) 5411.

Google Scholar

[104] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, Y. Liu, Chem. Commun. 48 (2012) 380.

Google Scholar

[105] D. Chowdhury, N. Gogoi, G. Majumdar, RSC Adv. 2 (2012) 12156

DOI: 10.1039/C2RA21705H

Google Scholar

[106] Z. Zhang, J. Hao, J. Zhang, B. Zhang, J. Tang, RSC Adv. 2 (2012) 8599

DOI: 10.1039/C2RA21217J

Google Scholar

[107] Z.C. Yang, M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, A.Y. Chang, X. Li, J. Wang, Chem. Commun. 47 (2011) 11615

DOI: 10.1039/C1CC14860E

Google Scholar

[108] P.C. Hsu, H.T. Chang, Chem. Commun. 48 (2012) 3984.

Google Scholar

[109] M.M. Titirici, M. Antonietti, Chem. Soc. Rev. 39 (2010) 103.

Google Scholar

[110] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. Int. Ed. 52 (2013) 3953.

DOI: 10.1002/anie.201300519

Google Scholar

[111] D.G. Dastidar, P. Mukherjee, D. Ghosh, D. Banerjee, Colloids Surf. A Physicochem. Eng. Asp. 611 (2021) 125781.

Google Scholar

[112] S. Anwar, H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M. Yan, Q. Wang, H. Bi, ACS Appl. Bio. Mater. 2 (2019) 2317.

DOI: 10.1021/acsabm.9b00112

Google Scholar

[113] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Chem. A Eur. J. 20 (2014)2254.

Google Scholar

[114] Y. Wang, A. Hu, J. Mater. Chem. C. 2 (2014) 6921.

Google Scholar

[115] R. Wang, K. Lu, Z. Tang, Y. Xu, J. Mater. Chem. A. 5 (2017) 3717.

Google Scholar

[116] S.C. Ray, A. Saha, N.R. Jana and R. Sarkar, Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application, J. Phys. Chem. C. 113 (2009) 18546–18551.

DOI: 10.1021/jp905912n

Google Scholar

[117] H. Gonçalves, P.A.S. Jorge, J.R.A. Fernandes, J.C.G. Esteves da Silva, Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation, Sens. ActuaT. B. 145 (2010) 702–707.

DOI: 10.1016/j.snb.2010.01.031

Google Scholar

[118] C.K. Chua, Z. Sofer, P. Simek, O. Jankovsky, K. Klimova, S. Bakardjieva, S. Hrdlickova Kuckova and M. Pumera, Synthesis of strongly Fluorescent graphene quantum dots by cage-opening buckminsterfullerene, ACS Nano. 9 (2015) 2548–2555.

DOI: 10.1021/nn505639q

Google Scholar

[119] J. Joseph and A. A. Anappara, White-Light-Emitting Carbon Dots Prepared by the Electrochemical Exfoliation of Graphite, Chem Phys. Chem. 18 (2017) 292–298.

DOI: 10.1002/cphc.201601020

Google Scholar

[120] Y. Hou, Q. Lu, J. Deng, H. Li and Y. Zhang, One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion, Anal. Chim. Acta. 866 (2015) 69–74.

DOI: 10.1016/j.aca.2015.01.039

Google Scholar

[121] Y. Zhang, J. Xiao, P. Zhuo, H. Yin, Y. Fan, X. Liu and Z. Chen, Carbon Dots Exhibiting ConcentrationDependent Full-Visible-Spectrum Emission for LightEmitting Diode Applications, ACS Appl. Mater. Interf, 11 (2019), 46054–46061.

DOI: 10.1021/acsami.9b14472

Google Scholar

[122] S. Ahmadian-Fard-Fini, M. Salavati-Niasari and H. Safardoust-Hojaghan, Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor, J. Mater. Sci.: Mater. Electron. 28 (2017) 16205–16214.

DOI: 10.1007/s10854-017-7522-1

Google Scholar

[123] B. Han, Y. Li, T. Peng, M. Yu, X. Hu and G. He, Fluorescent carbon dots directly derived from polyethyleneimine and their application for the detection of Co2+, Anal. Methods, 10 (2018) 2989–2993.

DOI: 10.1039/c8ay00481a

Google Scholar

[124] M. Li, C. Yu, C. Hu, W. Yang, C. Zhao, S. Wang, M. Zhang, J. Zhao, X. Wang and J. Qiu, Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield, Chem. Eng. J. 320 (2017) 570–575

DOI: 10.1016/j.cej.2017.03.090

Google Scholar

[125] H. Ding, J. S. Wei, P. Zhang, Z. Y. Zhou, Q. Y. Gao and H. M. Xiong, Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths, Small. 14 (2018) 1800612.

DOI: 10.1002/smll.201800612

Google Scholar

[126] K. Jiang, Y. Wang, X. Gao, C. Cai and H. Lin, Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime RoomTemperature-Phosphorescent Carbon Dots by Microwave Irradiation, Angew. Chem., Int. Ed. Engl. 57(2018) 6216–6220.

DOI: 10.1002/anie.201802441

Google Scholar

[127] M. Rong, Y. Feng, Y. Wang and X. Chen, One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging, Sens. Actuat. B. 245 (2017) 868–874

DOI: 10.1016/j.snb.2017.02.014

Google Scholar

[128] L. Shen, L. Zhang, M. Chen, X. Chen, J. Wang, Carbon. 55 (2013) 343.

Google Scholar

[129] G. Tong, J. Wang, R. Wang, X. Guo, L. He, F. Qiu, G. Wang, B. Zhu, X. Zhu, T. Liu, J. Mater. Chem. B. 3 (2015) 700.

Google Scholar

[130] V. Sharma, P. Tiwari, S. M. Mobin, J. Mater. Chem. B. 5 (2017) 8904.

Google Scholar

[131] C.L. Li, C.M. Ou, C.C. Huang, W.C. Wu, Y.P. Chen, T.E. Lin, L.C. Ho, C.W. Wang, C.C. Shih, H.C. Zhou, Y.C. Lee, W.F. Tzeng, T.J. Chiou, S.T. Chu, J. Cang, H.T. Chang, J. Mater. Chem. B. 2 (2014) 4564.

Google Scholar

[132] J. Zhu, F. Zhu, X. Yue, P. Chen, Y. Sun, L. Zhang, D. Mu, F. Ke, J. Nanomater. 2019 (2019) 7965756. https://doi.org/10.1155/ 2019/7965756

Google Scholar

[133] P.C. Hsu, P.C. Chen, C.M. Ou, H.Y. Chang, H.T. Chang, J. Mater. Chem. B 1 (2013) 1774. https://doi.org/10.1039/ C3TB00545C

Google Scholar

[134] R. Shashanka, B.E. Kumara Swamy, Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and its application as dopamine and hydrogen peroxide sensors, Phy. Chem. Res., 8(1) (2020) 1-18.

Google Scholar

[135] R. Shashanka, KevserBetülCeylan, The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers, Biointer. Res. App. Chem., 10(4) (2020) 5951–5959.

DOI: 10.33263/briac104.951959

Google Scholar

[136] R. Shashanka, Volkan Murat YILMAZ, Abdullah CahitKaraoglanli, OrhanUzun, Investigation of activation energy and antibacterial activity of CuOnano-rods prepared by Tilia tomentosa (Ihlamur) leaves, Moro. J. Chem., 8(2) (2020) 497-509.

Google Scholar

[137] R. Shashanka, HalilEsgin, Volkan Murat Yilmaz, YaseminCaglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, J. Sci. Adv. Mater. Dev., 5 (2020) 185-191.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[138] R. Shashanka, A.C. Karaoglanli, Y. Ceylan, O. Uzun, A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by TiliaTomentosa (Ihlamur) leaves and its antibacterial studies, Pharm. Sci., 26 (2020) 175-183.

DOI: 10.34172/ps.2020.5

Google Scholar

[139] R. Shashanka, Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, J. Ira. Chem. Soc., 18 (2021) 415-427.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[140] R. Shashanka, G.K. Jayaprakash, B.G. Prakashaiah, M. Kumar, B.E. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nanoflake modified carbon paste electrode by cyclic voltammetric method, Mater. Resear. Innov., (2021).

DOI: 10.1080/14328917.2021.1945795

Google Scholar

[141] B.T. Hoan, P.D. Tam, V.H. Pham, J. Nanotechnol. 2019 (2019) 2852816

DOI: 10.1155/2019/2852816

Google Scholar

[142] B.T. Hoan, P.V. Huan, H.N. Van, D.H. Nguyen, P. D. Tam, K. T. Nguyen, V. H. Pham, Luminesc. 33 (2018) 545. https://doi.org/

DOI: 10.1002/bio.3444

Google Scholar

[143] X. Qin, W. Lu, A. M. Asiri, A. O. Al-Youbi, X. Sun, Catal. Sci. Tech. 3 (2013) 1027

DOI: 10.1039/C2CY20635H

Google Scholar

[144] A. Tyagi, K. M. Tripathi, N. Singh, S. Choudhary, R. K. Gupta, RSC Adv. 6 (2016) 72423

DOI: 10.1039/C6RA10488F

Google Scholar

[145] L. Wang, H. S. Zhou, Anal. Chem. 86 (2014) 8902.

Google Scholar

[146] W. Liu, H. Diao, H. Chang, H. Wang, T. Li, W. Wei, Sens. Actuators B. 241 (2017) 190

DOI: 10.1016/j.snb.2016.10.068

Google Scholar

[147] N. Wang, Y. Wang, T. Guo, T. Yang, M. Chen, J. Wang, Biosens. Bioelectron. 85 (2016) 68.

Google Scholar

[148] X. Feng, Y. Jiang, J. Zhao, M. Miao, S. Cao, J. Fang, L. Shia, RSC Adv. 5 (2015) 31250.

Google Scholar

[149] A.-M. Alam, B.-Y. Park, Z. K. Ghouri, M. Park, H.-Y. Kim, Green Chem. 17 (2015) 3791

DOI: 10.1039/C5GC00686D

Google Scholar

[150] P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, H.-T. Chang, Green Chem. 14 (2012) 917

DOI: 10.1039/C2GC16451E

Google Scholar

[151] X. Teng, C. Ma, C. Ge, M. Yan, J. Yang, Y. Zhang, P. C. Morais, H. Bi, J. Mater. Chem. B 2 (2014) 4631.

Google Scholar

[152] P. Krishnaiah, R. Atchudan, S. Perumal, S. El-Sayed, Y.R. Lee, B.H. Jeon, Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+, Chemos. 286 (2022) 131764.

DOI: 10.1016/j.chemosphere.2021.131764

Google Scholar

[153] N. Sharma, I. Sharma, M.K. Bera, Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging, J. Fluores. 32 (2022) 1039–104.

DOI: 10.21203/rs.3.rs-1000229/v1

Google Scholar

[154] J. Zhang, Y. Yuan, G. Liang, S.-H. Yu, Adv. Sci. 2 (2015) 1500002

DOI: 10.1002/advs.201500002

Google Scholar

[155] Z. Wei, B. Wang, Y. Liu, Z. Liu, H. Zhang, S. Zhang, J. Chang, S. Lu, New J. Chem. 43 (2019) 718.

Google Scholar

[156] V. Adimule, S. Medapa, L.S. Kumar, P.K. Rao, Novel substituted phenoxy derivatives of 2-chloro-n-{5-[2-(4-methoxy-phenyl)-pyridin-3-yl]-[1, 3, 4] thiadiazol-2-yl}-acetamides: synthesis, characterization and invitro anticancer properties. J. Pharm. Chem. Biol. Sci. 2 (2014) 130- 137.

DOI: 10.7897/2230-8407.041214

Google Scholar

[157] V. Adimule, S. Medapa, L.S. Kumar, Design, Synthesis and Characterization of Novel Amine Derivatives of 5-[5-(Chloromethyl)-1, 3, 4-Oxadiazol-2-yl]- 2-(4-Fluorophenyl)-Pyridine as a New Class of Anticancer Agents. Dhaka Uni. J. Pharm. Sci., 16 (2017), 11–19.

DOI: 10.3329/dujps.v16i1.33377

Google Scholar

[158] V. Adimule, S. Medapa, L.S. Kumar, Design, Synthesis, Characterization and Cancer Cell Growth-Inhibitory Properties of Novel Derivatives of 2-(4-Fluoro-phenyl)-5-(5-Aryl Substituted-1, 3, 4-Oxadiazol-2-yl) Pyridine, J. Pharm. Res. Intern., 7(2015), 34-43.

DOI: 10.9734/bjpr/2015/15486

Google Scholar

[159] V. Adimule, Design, Synthesis and Cytotoxic evaluation of Novel 2-(4-N, N-Dimethyl) pyridine containing 1, 3, 4-oxadiazole moiety, Asian J. Biomed. and Pharma. Sci. 4 (2014) 1.

DOI: 10.15272/ajbps.v4i37.521

Google Scholar

[160] Adimule, V., Kerur, S.S., Chinnam, S. et al. Guar Gum and its Nanocomposites as Prospective Materials for Miscellaneous Applications: A Short Review. Top Catal (2022).

DOI: 10.1007/s11244-022-01587-5

Google Scholar

[161] R. Shashanka, Y. Kamacı, R. Taş, Y. Ceylan, A.S. Bülbül, O. Uzun, A.C. Karaoglanli, Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method, Physical Chemistry Research, 7(4) (2019) 799-812.

Google Scholar

[162] Y. Huang, Z. Cheng, NANO: Brief Reports Rev. 12 (2017) 1750123.

Google Scholar

[163] P. Rawat, P. Nain, S. Sharma, P.K. Sharma, V. Malik, S. Majumder, V.P. Verma, V. Rawat, J.S. Rhyee, An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots, Luminesc. (2022) 1–22.

DOI: 10.1002/bio.4255

Google Scholar

[164] P.C. Hsu, Z.Y. Shih, C.H. Lee, H.T. Chang, Green Chem. 14 (2012) 917.

Google Scholar

[165] L. Hu, Y. Sun, S. Li, X. Wang, K. Hu, L. Wang, X.-J. Liang, Y. Wu, Carbon. 67 (2014) 508.

Google Scholar

[166] P. Pierrat, R. Wang, D. Kereselidze, M. Lux, P. Didier, A. Kichler, F. Pons, L. Lebeau, Biomateri. 51 (2015) 290. https://doi.org/10. 1016/j.biomaterials.2015.02.017

DOI: 10.1016/j.biomaterials.2015.02.017

Google Scholar

[167] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, J. Am. Chem. Soc. 129 (2007) 11318. https://doi.org/10.1021/ ja073527l

DOI: 10.1021/ja073527l

Google Scholar

[168] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, Angew. Chem. Int. Ed. 52 (2013) 7800. https://doi.org/10.1002/anie. 201301114

Google Scholar

[169] Y. Zhao, S. Zou, D. Huo, C. Hou, M. Yang, J. Li, M. Bian, Anal. Chim. Acta. 1047 (2019) 179.

Google Scholar

[170] S. Hu, A. Trinchi, P. Atkin, I. Cole, Angew. Chem. Int. Ed. 54 (2015) 2970.

Google Scholar

[171] D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Chem. Commun. 46 (2010) 3681.

Google Scholar

[172] L. Zhao, F. Geng, F. Di, L.-H. Guo, B. Wan, Y. Yang, H. Zhang, G. Sun, RSC Adv. 4 (2014) 45768. https://doi.org/10.1039/ C4RA08071H

Google Scholar

[173] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, S. T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49 (2010) 4430.

DOI: 10.1002/anie.200906154

Google Scholar

[174] A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, S. K. Sahu, Sens. Actu. B. 242 (2016) 679.

Google Scholar

[175] X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48 (2012) 7955.

DOI: 10.1039/c2cc33869f

Google Scholar

[176] Y. Zhuo, H. Miao, D. Zhong, S. Zhu, X. Yang, One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Mater. Lett. 139 (2015) 197.

DOI: 10.1016/j.matlet.2014.10.048

Google Scholar

[177] H.P. Castro, V.S. Souza, J.D. Scholten, J.H. Dias, J.A. Fernandes, F.S. Rodembusch, R. Dos Reis, J. Dupont, S.R. Teixeira, R.R. Correia, Chem. A European J. 22 (2016) 138.

DOI: 10.1002/chem.201503286

Google Scholar

[178] M. Winter, R. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104(2004) 4245.

DOI: 10.1021/cr020730k

Google Scholar

[179] R. Shashanka, G.K. Jayaprakash, A. Pandith, A.C. Karaoglanli1, O. Uzun, Electrocatalytic investigation by improving the charge kinetics between carbon electrodes and dopamine using bio-synthesized CuO nanoparticles, Catalysts 2022, 12 (9), 994.

DOI: 10.3390/catal12090994

Google Scholar

[180] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598.

DOI: 10.1016/s1452-3981(23)17279-8

Google Scholar

[181] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, Internat. J. Sci. Eng. Res. 6 (2015) 1863–1871.

DOI: 10.1016/s1452-3981(23)17279-8

Google Scholar

[182] R.Sathish, B.E. Kumara Swamy, S. Aruna, M. Kumar, R. Shashanka, H. Jayadevappa. Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Chem. Sens., 2 (2012), 7.

Google Scholar

[183] R. Shashanka, B.E. Kumara Swamy, R. Sathish, C. Debasis, Synthesis of Silver Nanoparticles and their Applications Anal. Bioanal. Electrochem. 5 (2013) 455–466.

Google Scholar

[184] R. Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, Internat. J. Sci. Eng. Res. 7 (2016) 1275-1285.

DOI: 10.1016/s1452-3981(23)17279-8

Google Scholar

[185] R. Shashanka, Effect of Sintering Temperature on the Pitting Corrosion of Ball Milled Duplex Stainless Steel by using Linear Sweep Voltammetry, Anal. Bioanal. Electrochem. 10 (2018) 349-361.

Google Scholar

[186] J. Holdren, Energy and sustainability. Sci. 315 (2007) 737.

Google Scholar

[187] Y.X. Yang, K.K. Ge, S. Rehman, H. Bi, Nanocarbon-based electrodematerials applied for supercapacitors. Rare Met. (2022).

Google Scholar

[188] Q. Xu, H. Cai, W. Li, M. Wu, Y. Wud, X. Gong, Carbon dot/inorganic nanomaterial composites, J. Mater. Chem. A. 10 (2022), 14709.

DOI: 10.1039/d2ta02628g

Google Scholar

[189] A.M. Al-Enizi, M. Ubaidullah, D. Kumar, Carbon quantum dots (CQDs)/Ce doped NiO nanocomposite for high performance supercapacitor, Mater. Today Commun. 27 (2021) 102340.

DOI: 10.1016/j.mtcomm.2021.102340

Google Scholar

[190] R. Sinha, N. Roy, T. K. Mandal, SWCNT/ZnO nanocomposite decorated with carbon dots for photoresponsive supercapacitor applications, Chem. Eng. J. (2021) 133915.

DOI: 10.1016/j.cej.2021.133915

Google Scholar

[191] N. Arsalani, L.S. Ghadimi, I. Ahadzadeh, A.G. Tabrizi, T. Nann, Green Synthesized Carbon Quantum Dots/Cobalt Sulfide Nanocomposite as Efficient Electrode Material for Supercapacitors, Ener. Fuels. 35 (2021) 9635–9645.

DOI: 10.1021/acs.energyfuels.1c00369

Google Scholar

[192] B. Unnikrishnan, C.W. Wu, I.W.P. Chen, H.T. Chang, C.H. Lin, C.C. Huang, Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application, ACS Sustainable Chem. Eng. 4 (2016) 3008–3016.

DOI: 10.1021/acssuschemeng.5b01700

Google Scholar

[193] J.M. Wang, Z.B. Fang, T. Li, U.H. Sajid, Q.H. Luo, P. Chen, L. Hu, F.P. Zhang, Q.Y. Wang, H. Bi, Highly hydrophilic carbon dots' decoration on NiCo2O4 nanowires for greatly increased electric conductivity, supercapacitance, and energy density, Adv Mater Interf. 6 (2019) 1900049.

DOI: 10.1002/admi.201900049

Google Scholar

[194] S. Zhang, L.N. Sui, H.Z. Dong, W.B. He, L.F. Dong, L.Y. Yu, High-performance supercapacitor of graphene quantum dots with uniform sizes, ACS Appl Mater Interf. 10 (2018) 12983.

DOI: 10.1021/acsami.8b00323

Google Scholar

[195] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111.

DOI: 10.1002/adfm.201203771

Google Scholar

[196] M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale. 6 (2014) 11988.

DOI: 10.1039/c4nr02365j

Google Scholar

[197] B. Vijay, B. Arie, M. Boris, A. Doron, G. Aharon, T. Michael, P. Zeev, Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors, J Phys Chem C. 120 (2016) 13406.

DOI: 10.1021/acs.jpcc.6b04045.s001

Google Scholar

[198] A. Prasath, M. Athika, E. Duraisamy, A.S. Sharma, V.S. Devi, P. Elumalai, Carbon Quantum Dot-Anchored Bismuth Oxide Composites as Potential Electrode for Lithium-Ion Battery and Supercapacitor Applications. ACS Omega. 4 (2019) 4943.

DOI: 10.1021/acsomega.8b03490

Google Scholar