Nanotechnology and their Evaluation of Bi-Functional Applications

Article Preview

Abstract:

Nanotechnology has an ever-growing interest due to their utilizations in various platforms of science. With their unique features in structures and morphology, they have dominated the arena of research and development. In this review, we have delt with applications of nanomaterials as both photocatalytic and biological functions. The raising concerns pertaining to diseases and infections worldwide, our work was intended to review nanoparticles which could potentially target such problems. To study the preparations of nanoparticles both by chemical and biological methods. We have also observed for bactericidal ability against pathogenic organisms and found to be effective in controlling the growth of such microbes. Further as per the survey they were also found to have the ability to scavenge certain oxidants like DPPH, ABTS and NO etc. Keywords: Nanotechnology, antioxidant ability, antibacterial capacity, biocatalysis

You might also be interested in these eBooks

Info:

Pages:

33-43

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bundschuh et al., "Nanoparticles in the environment: where do we come from, where do we go to?," Environ Sci Eur, vol. 30, p.1–17, Dec. 2018.

DOI: 10.1186/s12302-018-0132-6

Google Scholar

[2] F. A. Bezza, S. M. Tichapondwa, and E. M. N. Chirwa, "Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents," Sci Rep, vol. 10, p.1–18, Dec. 2020.

DOI: 10.1038/s41598-020-73497-z

Google Scholar

[3] K. S. Siddiqi and A. Husen, "Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review," Biomater Res, vol. 24, p.1–15, Dec. 2020.

DOI: 10.1186/s40824-020-00188-1

Google Scholar

[4] V. Adimule, S. S. Nandi, B. C. Yallur, D. Bhowmik, and A. H. Jagadeesha, "Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method," J Fluoresc, vol. 31, no. 2, p.487–499, 2021.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[5] V. Adimule, B. C. Yallur, D. Bhowmik, and A. H. J. Gowda, "Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures," Journal of Materials Science: Materials in Electronics, vol. 32, no. 9, p.12164–12181, 2021.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[6] R. Shashanka, H. Esgin, V. M. Yilmaz, and Y. Caglar, "Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells," Journal of Science: Advanced Materials and Devices, vol. 5, no. 2, p.185–191, 2020.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[7] S. Rajendrachari, B. E. K. Swamy, S. Reddy, and D. Chaira, "Synthesis of silver nanoparticles and their applications," 2013.

Google Scholar

[8] V. Adimule, M. G. Revaigh, and H. J. Adarsha, "Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia," J Mater Eng Perform, vol. 29, no. 7, p.4586–4596, 2020.

DOI: 10.1007/s11665-020-04979-4

Google Scholar

[9] S. Rajendrachari and K. BE, "Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors," Physical Chemistry Research, vol. 8, no. 1, p.1–18, 2020.

Google Scholar

[10] V. Adimule, B. C. Yallur, and K. Sharma, "Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures," Journal of Optics, vol. 51, no. 1, p.173–183, 2022.

DOI: 10.1007/s12596-021-00746-3

Google Scholar

[11] R. Shashanka, "Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract," Journal of the Iranian Chemical Society, vol. 18, no. 2, p.415–427, 2021.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[12] V. Adimule, S. Medapa, L. S. Kumar, and P. K. Rao, "Novel Substituted Phenoxy Derivatives of 2-Chloro-N-{5-[2-(4-Methoxy-Phenyl)-Pyridin-3-yl]-[1, 3, 4] Thiadiazol-2-yl}-Acetamides: Synthesis, Characterization and invitro Anticancer Properties," Int. J. Drug Dev. and Res, vol. 6, p.188–195, 2014.

DOI: 10.7897/2230-8407.041214

Google Scholar

[13] M. P. Rajeeva, C. S. Naveen, A. R. Lamani, and H. S. Jayanna, "Synthesis, Characterization and Electrical Conductivity of High Porous Tin Oxide Nanocrystallites for Ethanol Sensing," Mater Today Proc, vol. 4, p.12094–12102, 2017.

DOI: 10.1016/j.matpr.2017.09.136

Google Scholar

[14] A. S. Jbara, Z. Othaman, A. A. Ati, and M. A. Saeed, "Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method," Mater Chem Phys, vol. 188, p.24–29, Feb. 2017.

DOI: 10.1016/j.matchemphys.2016.12.015

Google Scholar

[15] V. Adimule, S. S. Nandi, B. C. Yallur, D. Bhowmik, and A. H. Jagadeesha, "Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method," J Fluoresc, vol. 31, p.487–499, Mar. 2021.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[16] G. Danaei, S. Vander Hoorn, A. D. Lopez, C. J. Murray, and M. Ezzati, "Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors," The Lancet, vol. 366, p.1784–1793, Nov. 2005.

DOI: 10.1016/S0140-6736(05)67725-2

Google Scholar

[17] K. K. Somashekharappa and S. Rajendrachari, "Sustainable development information management of carbon nanomaterial-based sensors," in Carbon Nanomaterials-Based Sensors, Elsevier, 2022, p.3–12.

DOI: 10.1016/B978-0-323-91174-0.00001-9

Google Scholar

[18] S. Rajendrachari, K. K. Somashekharappa, R. S. Mahale, S. Vasanth, and S. P. Chikkegouda, "A Review on Cyclic Voltammetric Investigation of Toxic Heavy Metals," Dr. S. Rajendrachari, Dr. K. K. Somashekharappa, Dr. S. P. Chikkegouda, and Dr. S. Vasanth, Eds. Rijeka: IntechOpen, 2022, p. Ch. 4.

DOI: 10.5772/intechopen.108411

Google Scholar

[19] S. Rajendrachari and D. Ramakrishna, "1 - Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform," in Woodhead Publishing Series in Electronic and Optical Materials, C. M. Hussain and J. G. B. T.-F. N.-B. E. S. Manjunatha, Eds. Woodhead Publishing, 2022, p.3–25.

DOI: 10.1016/B978-0-12-823788-5.00010-7

Google Scholar

[20] V. Adimule, B. C. Yallur, D. Bhowmik, and A. H. J. Gowda, "Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures," Journal of Materials Science: Materials in Electronics, vol. 32, p.12164–12181, May 2021.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[21] K. K. Somashekharappa, R. B. Halappa, and S. Rajendrachari, "Green Chemistry Applications in Electrochemical Sensors," in Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications, vol. 1437, American Chemical Society, 2023, p.23–37. doi:.

DOI: 10.1021/bk-2023-1437.ch002

Google Scholar

[22] K. S. Kiran, A. Narayana, and S. V. Lokesh, "Synthesis of SrTiO3 Nanotubes from Green TiO2 Nanoparticles for Enhanced Photocatalytic Activity," Asian Journal of Chemistry, vol. 32, p.2520–2528, Sep. 2020.

DOI: 10.14233/ajchem.2020.22820

Google Scholar

[23] L. V KiranK S, "Improved Photocatalytic Degradation of Methyl Orange Dye in UV Light Irradiation by K2Ti6O13 Nanorods," Journal, vol. 8, no. 3, p.723–730, 2021.

DOI: 10.18596/jotcsa.766952

Google Scholar

[24] C. C. Paramesh et al., "Silver nanoparticles anchored TiO2 nanotubes prepared using saponin extract as heterogeneous and recyclable catalysts for reduction of dyes," Ceram Int, vol. 47, p.14750–14759, May 2021.

DOI: 10.1016/j.ceramint.2020.11.173

Google Scholar

[25] K. S. Kiran, R. Shashanka, and S. V Lokesh, "Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes," Top Catal, 2022.

DOI: 10.1007/s11244-021-01558-2

Google Scholar

[26] K. Kenchappa Somashekharappa and S. V. Lokesh, "Hydrothermal Synthesis of K 2 Ti 6 O 13 Nanotubes/Nanoparticles: A Photodegradation Study on Methylene Blue and Rhodamine B Dyes," ACS Omega, vol. 6, p.7248–7256, Mar. 2021.

DOI: 10.1021/acsomega.0c02087

Google Scholar

[27] L. S. V Kiran K S, Ashwath Narayana, "Enhanced Photocatalytic Activity of Perovskite SrTiO3 Nanorods," Solid State Technology, vol. 63, no. 04, p.1913–1920, 2020.

Google Scholar

[28] K. S. Kiran, D. Ramesh, and R. Shashanka, "Photocatalytic Degradation of Rhodamine B Dye by Nanocomposites: A Review," Applied Mechanics and Materials, vol. 908, p.119–129, Aug. 2022.

DOI: 10.4028/p-d1j831

Google Scholar

[29] S. Rajendrachari, G. Kudur Jayaprakash, A. Pandith, A. C. Karaoglanli, and O. Uzun, "Electrocatalytic Investigation by Improving the Charge Kinetics between Carbon Electrodes and Dopamine Using Bio-Synthesized CuO Nanoparticles," Catalysts, vol. 12, no. 9. 2022.

DOI: 10.3390/catal12090994

Google Scholar

[30] S. Rajendrachari et al., "Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques," Biosensors (Basel), vol. 12, no. 12, p.1173, 2022.

DOI: 10.3390/bios12121173

Google Scholar

[31] R. S. Keri, V. Adimule, P. Kendrekar, and B. S. Sasidhar, "The Nano-Based Catalyst for the Synthesis of Benzimidazoles," Top Catal, 2022.

DOI: 10.1007/s11244-022-01562-0

Google Scholar

[32] P. N. Basavarajappa, M. M. R. Hegde, S. Rajendrachari, and A. O. Surendranathan, "Investigation of structural and Mechanical properties of Nanostructured TiMgSr Alloy for Biomedical applications," 2022.

Google Scholar

[33] S. Rajendrachari, V. Adimule, M. Gulen, F. Khosravi, and K. K. Somashekharappa, "Synthesis and Characterization of High Entropy Alloy 23Fe-21Cr-18Ni-20Ti-18Mn for Electrochemical Sensor Applications," Materials, vol. 15, no. 21. 2022.

DOI: 10.3390/ma15217591

Google Scholar

[34] V. Adimule, S. S. Nandi, B. C. Yallur, D. Bhowmik, and A. H. Jagadeesha, "Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics," Mater Today Chem, vol. 20, p.1–13, Jun. 2021.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[35] S. S. Kshama, K. Swamynathan, and R. Shashanka, "Electrochemical Devices for Soil Analysis," in Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications, vol. 1437, American Chemical Society, 2023, p.121–139. doi:.

DOI: 10.1021/bk-2023-1437.ch006

Google Scholar

[36] W.-K. Shin, J. Cho, A. G. Kannan, Y.-S. Lee, and D.-W. Kim, "Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries," Sci Rep, vol. 6, p.1–10, Sep. 2016.

DOI: 10.1038/srep26332

Google Scholar

[37] S. Chetana et al., "Cu2ZnSnS4/MoS2/CNT- ternary heterostructures for paracetamol determination," Mater Chem Phys, vol. 294, p.35–47, Jan. 2023.

DOI: 10.1016/j.matchemphys.2022.126869

Google Scholar

[38] V. Adimule, S. S. Nandi, and H. J. Adarsha, "A Facile Synthesis of Cr Doped WO3 Nanostructures, Study of their Current-Voltage, Power Dissipation and Impedance Properties of Thin Films," Journal of Nano Research, vol. 67, p.33–42, Apr. 2021.

DOI: 10.4028/www.scientific.net/JNanoR.67.33

Google Scholar

[39] I. Khan, K. Saeed, and I. Khan, "Nanoparticles: Properties, applications and toxicities," Arabian Journal of Chemistry, vol. 12, p.908–931, Nov. 2019.

DOI: 10.1016/j.arabjc.2017.05.011

Google Scholar

[40] D. Maiti, X. Tong, X. Mou, and K. Yang, "Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study," Front Pharmacol, vol. 9, p.1–16, Mar. 2019.

DOI: 10.3389/fphar.2018.01401

Google Scholar

[41] K. D. Patel, R. K. Singh, and H.-W. Kim, "Carbon-based nanomaterials as an emerging platform for theranostics," Mater Horiz, vol. 6, p.434–469, 2019.

DOI: 10.1039/C8MH00966J

Google Scholar

[42] M. Srinivasan, M. Rajabi, and S. Mousa, "Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy," Nanomaterials, vol. 5, p.1690–1703, Oct. 2015.

DOI: 10.3390/nano5041690

Google Scholar

[43] V. Adimule, D. Bhowmik, and A. Suryavanshi, "Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties," IOP Conf Ser Mater Sci Eng, vol. 577, p.1–7, Nov. 2019.

DOI: 10.1088/1757-899X/577/1/012032

Google Scholar

[44] V. Lobo, A. Patil, A. Phatak, and N. Chandra, "Free radicals, antioxidants and functional foods: Impact on human health," Pharmacogn Rev, vol. 4, p.118–126, 2010.

DOI: 10.4103/0973-7847.70902

Google Scholar

[45] Y. SUN, X. TAO, X. MEN, Z. XU, and T. WANG, "In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin," J Integr Agric, vol. 16, p.1808–1818, Aug. 2017.

DOI: 10.1016/S2095-3119(16)61560-5

Google Scholar

[46] K. Athreya and M. F. Xavier, "Antioxidants in the Treatment of Cancer," Nutr Cancer, vol. 69, p.1099–1104, Nov. 2017.

DOI: 10.1080/01635581.2017.1362445

Google Scholar

[47] A. Giridasappa et al., "Antioxidant, antiproliferative and antihemolytic properties of phytofabricated silver nanoparticles using Simarouba glauca and Celastrus paniculatus extracts," Appl Nanosci, vol. 11, p.2561–2576, Oct. 2021.

DOI: 10.1007/s13204-021-02084-z

Google Scholar

[48] A. Giridasappa et al., "Phytofabrication of cupric oxide nanoparticles using Simarouba glauca and Celastrus paniculatus extracts and their enhanced apoptotic inducing and anticancer effects," Appl Nanosci, vol. 11, p.1393–1409, Apr. 2021.

DOI: 10.1007/s13204-021-01753-3

Google Scholar

[49] S. Rajendrachari, P. Taslimi, A. C. Karaoglanli, O. Uzun, E. Alp, and G. K. Jayaprakash, "Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method," Arabian Journal of Chemistry, vol. 14, p.1–13, Jun. 2021.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[50] B. Halliwell and J. M. C. Gutteridge, "The definition and measurement of antioxidants in biological systems," Free Radic Biol Med, vol. 18, p.125–126, Jan. 1995.

DOI: 10.1016/0891-5849(95)91457-3

Google Scholar

[51] R. Amorati, M. C. Foti, and L. Valgimigli, "Antioxidant Activity of Essential Oils," J Agric Food Chem, vol. 61, p.10835–10847, Nov. 2013.

DOI: 10.1021/jf403496k

Google Scholar

[52] O. E. Adebiyi, F. O. Olayemi, T. Ning-Hua, and Z. Guang-Zhi, "In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia," Beni Suef Univ J Basic Appl Sci, vol. 6, p.10–14, Mar. 2017.

DOI: 10.1016/j.bjbas.2016.12.003

Google Scholar

[53] G. Amulya, R. Sudharani, Ismail. Shareef, M, and S. M. Gopinath, "Haemato-biochemical changes in sheep suffering from gastrointestinal parasitism," Indian Journal of Field Veterinarians, vol. 10, p.20–22, 2014.

Google Scholar

[54] Md. N. Alam, N. J. Bristi, and Md. Rafiquzzaman, "Review on in vivo and in vitro methods evaluation of antioxidant activity," Saudi Pharmaceutical Journal, vol. 21, p.143–152, Apr. 2013.

DOI: 10.1016/j.jsps.2012.05.002

Google Scholar

[55] B. Parikh and V. H. Patel, "Quantification of phenolic compounds and antioxidant capacity of an underutilized Indian fruit: Rayan [ Manilkara hexandra (Roxb.) Dubard]," Food Science and Human Wellness, vol. 6, p.10–19, Mar. 2017.

DOI: 10.1016/j.fshw.2016.11.002

Google Scholar

[56] R. Shashanka, G. K. Jayaprakash, P. B.G, M. Kumar, and B. E. Kumara Swamy, "Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nano-flake modified carbon paste electrode by cyclic voltammetric method," Materials Research Innovations, vol. 26, p.229–239, Jun. 2022.

DOI: 10.1080/14328917.2021.1945795

Google Scholar

[57] M. S. Kiran, V. S. Betageri, C. R. R. Kumar, S. P. Vinay, and M. S. Latha, "In-Vitro Antibacterial, Antioxidant and Cytotoxic Potential of Silver Nanoparticles Synthesized Using Novel Eucalyptus tereticornis Leaves Extract," J Inorg Organomet Polym Mater, vol. 30, p.2916–2925, Aug. 2020.

DOI: 10.1007/s10904-020-01443-7

Google Scholar

[58] Udayabhanu et al., "Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties," Mater Sci Semicond Process, vol. 33, p.81–88, May 2015.

DOI: 10.1016/j.mssp.2015.01.034

Google Scholar

[59] V. Adimule, P. Vageesha, G. Bagihalli, D. Bowmik, and H. J. Adarsha, "Synthesis, Characterization of Hybrid Nanomaterials of Strontium, Yttrium, Copper Doped with Indole Schiff Base Derivatives Possessing Dielectric and Semiconductor Properties," in Macromolecular Symposia, vol. 400, 2019, p.1131–1140.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[60] Y. A. Selim, M. A. Azb, I. Ragab, and M. H. M. Abd El-Azim, "Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities," Sci Rep, vol. 10, p.3445–3454, Dec. 2020.

DOI: 10.1038/s41598-020-60541-1

Google Scholar

[61] R. Batool, M. R. Khan, M. Sajid, S. Ali, and Z. Zahra, "Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl.) R.Br.," BMC Chem, vol. 13, p.1–15, Dec. 2019.

DOI: 10.1186/s13065-019-0549-z

Google Scholar

[62] A. K. Alam et al., "The Antioxidative Fraction of White Mulberry Induces Apoptosis through Regulation of p.53 and NFκB in EAC Cells," PLoS One, vol. 11, p.1–18, Dec. 2016.

DOI: 10.1371/journal.pone.0167536

Google Scholar

[63] V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar, "Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity," Materials Science and Engineering: C, vol. 58, p.36–43, Jan. 2016.

DOI: 10.1016/j.msec.2015.08.018

Google Scholar

[64] G. K. Jayaprakash, B. E. Kumara Swamy, S. Rajendrachari, S. C. Sharma, and R. Flores-Moreno, "Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications," J Mol Liq, vol. 334, p.1–7, Jul. 2021.

DOI: 10.1016/j.molliq.2021.116348

Google Scholar

[65] J. Singh and A. S. Dhaliwal, "Novel Green Synthesis and Characterization of the Antioxidant Activity of Silver Nanoparticles Prepared from Nepeta leucophylla Root Extract," Anal Lett, vol. 52, p.213–230, Jan. 2019.

DOI: 10.1080/00032719.2018.1454936

Google Scholar

[66] M. Hamelian, K. Varmira, and H. Veisi, "Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential," J Photochem Photobiol B, vol. 184, p.71–79, Jul. 2018.

DOI: 10.1016/j.jphotobiol.2018.05.016

Google Scholar

[67] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, "Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations," Beilstein Journal of Nanotechnology, vol. 9, p.1050–1074, Apr. 2018.

DOI: 10.3762/bjnano.9.98

Google Scholar

[68] S. Anu Mary Ealia and M. P. Saravanakumar, "A review on the classification, characterisation, synthesis of nanoparticles and their application," IOP Conf Ser Mater Sci Eng, vol. 263, p.1–16, Nov. 2017.

DOI: 10.1088/1757-899X/263/3/032019

Google Scholar

[69] R. Shashanka and B. E. Kumara Swamy, "Simultaneous electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application," SN Appl Sci, vol. 2, p.1–10, May 2020.

DOI: 10.1007/s42452-020-2785-1

Google Scholar

[70] R. R. Wakaskar, "General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes," J Drug Target, vol. 26, p.311–318, Apr. 2018.

DOI: 10.1080/1061186X.2017.1367006

Google Scholar

[71] D. Maiti, X. Tong, X. Mou, and K. Yang, "Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study," Front Pharmacol, vol. 9, p.1–16, Mar. 2019.

DOI: 10.3389/fphar.2018.01401

Google Scholar

[72] K. D. Patel, R. K. Singh, and H.-W. Kim, "Carbon-based nanomaterials as an emerging platform for theranostics," Mater Horiz, vol. 6, p.434–469, 2019.

DOI: 10.1039/C8MH00966J

Google Scholar

[73] M. Srinivasan, M. Rajabi, and S. Mousa, "Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy," Nanomaterials, vol. 5, p.1690–1703, Oct. 2015.

DOI: 10.3390/nano5041690

Google Scholar

[74] O. V Salata, "Applications of nanoparticles in biology and medicine," J Nanobiotechnology, vol. 2, p.1–6, 2016.

DOI: 10.1186/1477-3155-2-3

Google Scholar

[75] J. López-Fernández, M. D. Benaiges, and F. Valero, "Constitutive Expression in Komagataella phaffii of Mature Rhizopus oryzae Lipase Jointly with Its Truncated Prosequence Improves Production and the Biocatalyst Operational Stability," Catalysts, vol. 11, no. 10. 2021.

DOI: 10.3390/catal11101192

Google Scholar

[76] S. Bansode, "Cancer Biology-Causes & Biomarkers of Cancer.," Current research in Oncology, vol. 2019, p.1–9, 2019.

Google Scholar

[77] C. B. Blackadar, "Historical review of the causes of cancer," World J Clin Oncol, vol. 7, p.54–86, 2016.

DOI: 10.5306/wjco.v7.i1.54

Google Scholar

[78] D. Karley, D. Gupta, and A. Tiwari, "Biomarker for Cancer: A great Promise for Future.," World J Oncol, vol. 2, p.151–157, Aug. 2011.

Google Scholar

[79] G. Halligudra et al., "Magnetic Fe3O4 supported MoS2 nanoflowers as catalyst for the reduction of p-nitrophenol and organic dyes and as an electrochemical sensor for the detection of pharmaceutical samples," Ceram Int, vol. 6, p.1–13, Jun. 2022.

DOI: 10.1016/j.ceramint.2022.06.188

Google Scholar

[80] N. S. Fallah and M. Mokhtary, "Tin oxide nanoparticles (SnO 2 -NPs): An efficient catalyst for the one-pot synthesis of highly substituted imidazole derivatives," Journal of Taibah University for Science, vol. 9, p.531–537, Oct. 2015.

DOI: 10.1016/j.jtusci.2014.12.004

Google Scholar

[81] M. Farahmandjou and N. Golabiyan, "Synthesis and characterisation of Al2O3 nanoparticles as catalyst prepared by polymer co-precipitation method," Materials Engineering Research, vol. 1, p.40–44, 2019.

DOI: 10.25082/MER.2019.02.002

Google Scholar

[82] M. Ghaedi et al., "Synthesis of CuS nanoparticles and evaluation of its antimicrobial properties in combination with Linum usitatissimum root and shoot extract," Desalination Water Treat, vol. 57, p.24456–24466, Nov. 2016.

DOI: 10.1080/19443994.2016.1138896

Google Scholar

[83] A. Roy, O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz, "Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity," RSC Adv, vol. 9, p.2673–2702, 2019.

DOI: 10.1039/C8RA08982E

Google Scholar

[84] A. Azam, "Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains," Int J Nanomedicine, p.3527–3535, Jul. 2012.

DOI: 10.2147/IJN.S29020

Google Scholar

[85] A. Giridasappa, I. Shareef M, G. S. Maheswarappa, D. Rangappa, P. Doddakunche Shivaramu, and C. Sabbanahalli, "Synthesis, Antioxidant, Bactericidal and Antihemolytic activity of Al2O3 and SnO2 Nanoparticles," Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, vol. 3, p.64–71, 2023.

DOI: 10.1007/s40011-023-01444-9

Google Scholar

[86] P. M. Gopinath, G. Narchonai, D. Dhanasekaran, A. Ranjani, and N. Thajuddin, "Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases," Asian J Pharm Sci, vol. 10, p.138–145, Apr. 2015.

DOI: 10.1016/j.ajps.2014.08.007

Google Scholar

[87] M. Yadollahi, I. Gholamali, H. Namazi, and M. Aghazadeh, "Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels," Int J Biol Macromol, vol. 73, p.109–114, Feb. 2015.

DOI: 10.1016/j.ijbiomac.2014.10.063

Google Scholar

[88] H. Padalia, P. Moteriya, and S. Chanda, "Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential," Arabian Journal of Chemistry, vol. 8, p.732–741, Sep. 2015.

DOI: 10.1016/j.arabjc.2014.11.015

Google Scholar