Controlled Synthesis and Electrical Properties Study of GeAs2Te4 Single Crystals

Article Preview

Abstract:

Exploration of the optoelectronic memristor is required to investigate the photoelectric properties of materials. The traditional memristor material GeAs2Te4 is hopeful to be developed into a new type of optoelectronic memristor. However, acquiring high-quality single crystals remains challenging, and the electrical properties of single crystals of GeAs2Te4 need to be explored. Herein, a controlled method is introduced to grow reliable quality GeAs2Te4 single crystals, and the electrical and optoelectronic properties are studied. The photodetector based on GeAs2Te4 exhibits acceptable optoelectronic performance at designed low temperatures. The responsivity and detectivity of the GeAs2Te4-based photodetector reached the value of about 0.137 A W-1 and 6.9×107 Jones, respectively. It is promising to introduce this family of materials into the field of photodetector and also maybe further in the area of optoelectronic memristors.

You might also be interested in these eBooks

Info:

Pages:

23-32

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage, Nat Mater. 6 (2007) 824–832.

DOI: 10.1038/nmat2009

Google Scholar

[2] M. Lanza, A. Sebastian, W. D. Lu, M. L. Gallo, M-F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, J. B. Roldan, Memristive technologies for data storage, computation, encryption, and radio-frequency communication, Science. 376 (2022) eabj9979.

DOI: 10.1126/science.abj9979

Google Scholar

[3] Y. T. Liu, X. B. Li, H. Zheng, N. K. Chen, X. P. Wang, X. L. Zhang, H. B. Sun, S. B. Zhang, High‐throughput screening for phase‐change memory materials, Adv. Funct. Mater. 31 (2021) 2009803.

DOI: 10.1002/adfm.202009803

Google Scholar

[4] F. C. Zhou, Z. Zhou, J. W. Chen, T. H. Choy, J. L. Wang, N. Zhang, Z. Y. Lin, S. M. Yu, J. F. Kang, H. S. Wong, Y. Chai, Optoelectronic resistive random access memory for neuromorphic vision sensors, Nat Nanotechnol. 14 (2019) 776–782.

DOI: 10.1038/s41565-019-0501-3

Google Scholar

[5] B. S. Tang, H. Veluri, Y. D. Li, Z. G. Yu, M. Waqar, J. F. Leong, M. Sivan, E. Zamburg, Y. W. Zhang, J. Wang, A. V. Thean, Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing, Nat Commun. 13 (2022) 3037.

DOI: 10.1038/s41467-022-30519-w

Google Scholar

[6] Y. F. Pei, Z. Q. Li, B. Li, Y. Zhao, H. He, L. Yan, X. Y. Li, J. J. Wang, Z. Zhao, Y. Sun, Z. Y. Zhou, J. H. Zhou, R. Guo, J. S. Chen, X. B. Yan, A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS‐Core/Shell (SC) nanorod arrays optoelectronic memristor, Adv. Funct. Mater. 32 (2022) 2203054.

DOI: 10.1002/adfm.202203454

Google Scholar

[7] L. Sun, Y. X. Zhou, X. D. Wang, Y. H. Chen, V. L. Deringer, R. Mazzarello, W. Zhang, Ab initio molecular dynamics and materials design for embedded phase-change memory, npj Comput Mater. 29 (2021) 1-8.

DOI: 10.1038/s41524-021-00496-7

Google Scholar

[8] S.C. Chen, M.R. Mahmoodi, Y.Y. Shi, C. Mahata, B. Yuan, X. H. Liang, C. Wen, F. Hui, D. Akinwande, D. B. Sttrukov, M. Lanza, Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks, Nat Electronics. 3 (2020) 638-645.

DOI: 10.1038/s41928-020-00473-w

Google Scholar

[9] S. Kyrsta, R. Cremer, D. Neuschütz, M. Laurenzis, P. H. Bolivar, H. Kurz, Depisition and characterization of Ge-Sb-Te layers for applications in optical data storage, Appl. Surf. Sci. 179, 55-60 (2001).

DOI: 10.1016/s0169-4332(01)00263-x

Google Scholar

[10] K. Ramesh, J. Non, Preparation and properties of Ge–As–Te glasses over an extended composition ranges, Cryst. Solids. 355 (2009) 2045-2049.

DOI: 10.1016/j.jnoncrysol.2009.05.068

Google Scholar

[11] S. Prakash, S. Asokan, D. B. Ghare, A guideline for designing chalcogenide-based glasses for threshold switching characteristics, IEEE. ELECTR. DEVICE. L. 18 (2) (1997) 45-47.

DOI: 10.1109/55.553039

Google Scholar

[12] P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, J. Bednarčik, Short-range order in Ge-As-Te glasses, J. Am. Ceram. Soc. 97 (2014) 1625-1632.

DOI: 10.1111/jace.12823

Google Scholar

[13] P. Hawlová, F. Verger, V. Nazabal, R. Boidin, P. Němec, Accurate determination of optical functions of Ge-As-Te glasses via spectroscopic ellipsometry, J. Am. Ceram. Soc. 97 (2014) 3044-3047.

DOI: 10.1111/jace.13190

Google Scholar

[14] S. H. Mohamed, M. M. Wakkad, A. M. Ahmed, A. K. Diab, Structural and optical properties of Ge-As-Te thin films, Eur. Phys. J. Appl. Phys. 34 (2006) 165-171.

DOI: 10.1051/epjap:2006061

Google Scholar

[15] K. Aryana, J. T. Gaskins, J. Nag, J. C. Read, D. H. Olson, M. K. Grobis, P. E. Hopkins, Thermal properties of carbon nitride toward use as an electrode in phase change memory devices, Appl. Phys. Lett. 116 (2020) 043502.

DOI: 10.1063/1.5134075

Google Scholar

[16] J. L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, E. Varesi, Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C, J. Appl. Phys. 107 (2010) 044314.

DOI: 10.1063/1.3284084

Google Scholar

[17] K. Ghosh, A. Kusiak, P. Noé, M. C. Cyrille, J. L. Battaglia, Thermal conductivity of amorphous and crystalline GeTe thin film at high temperature: Experimental and theoretical study, Phys. Rev. B. 101 (2020) 214305.

DOI: 10.1103/physrevb.101.214305

Google Scholar

[18] A. Kusiak, C. Chassain, A. M. Canseco, K. Ghosh, M. C. Cyrille, A. L. Serra, G. Navarro, M. Bernard, N. P. Tran, J. L. Battaglia, Temperature‐dependent thermal conductivity and interfacial resistance of Ge‐rich Ge2Sb2Te5 films and multilayers, Phys. Status. Soli. 16 (2022) 2100507.

DOI: 10.1002/pssr.202100507

Google Scholar

[19] Z. Yang, A. A.Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection, J. Am. Ceram. Soc. 93 (7) (2010) 1941-1944.

DOI: 10.1111/j.1551-2916.2010.03686.x

Google Scholar

[20] Y. Saito, K. V. Mitrofanov, K. Makino, P. Fons, A. V. Kolobov, J. Tominaga, F. Uesugi, M. Takeguchi, Chalcogenide materials engineering for phase‐change memory and future electronics applications: From Sb–Te to Bi–Te, Phys. Status Soli RRL. 15 (2021) 2000414.

DOI: 10.1002/pssr.202000414

Google Scholar

[21] R. Golovchak, L. Calvez, B. Bureau, J. Chem, Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis, Phys. 139 (2013) 054508.

DOI: 10.1063/1.4817332

Google Scholar

[22] L. Tichý, M. Frumar, J. Klikorka, Some electrical properties of GeBi2Te4 single crystals, Phys. Stat. Sol. 56 (1979) 323.

DOI: 10.1002/pssa.2210560135

Google Scholar

[23] P. E. Lippens, J. C. Jumas, O. Fourcade, L. Aldon, A. G. Rocque, C. Sénémaudb, Electronic structure of Ge-As-Te glasses, J. Phys. Chem. Solids. 61 (2000) 1761-1767.

DOI: 10.1016/s0022-3697(00)00054-8

Google Scholar

[24] Z.Y. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.L. Anne, B. Bureau, P. Lucas, Opto-electronphoretic detection of bio-molecules using conducting chalcogenide glass sensors, Opt. Express. 18 (25) (2010) 26755.

DOI: 10.1364/oe.18.026754

Google Scholar

[25] Y. G. Lu, M. Stegmaier, P. Nukala, M. A. Giambra, S. Ferrari, A. Busacca, W. H. Pernice, R. Agarwal, Mixed-mode operation of hybrid phase-change nanophotonic circuits, Nano Lett. 17 (2017) 150-155.

DOI: 10.1021/acs.nanolett.6b03688

Google Scholar

[26] H.Y. Zhang, L.J. Zhou, L.J. Lu, J. Xu, N.N. Wang, H. Hu, B.M. Rahman, Z.P. Zhou, J.P. Chen, Miniature multilevel optical memristive switch using phase change material, ACS Photonics. 6 (2019) 2205-2212.

DOI: 10.1021/acsphotonics.9b00819

Google Scholar

[27] N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. G. Cheng, C. D. Wright, W. H. Pernice, H. Bhaskaran, Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality, Sci. Adv. 5 (2019) eaaw2687.

DOI: 10.1126/sciadv.aaw2687

Google Scholar

[28] M.M. Agaguseinova, G.R. Gurbanov, M.B. Adygezalova, Russ. J, Physicochemical interactions in the GeSb2Te4-GeBi2Te4 system, Inorg. Chem. 57 (2012) 449-451.

DOI: 10.1134/s0036023612030023

Google Scholar

[29] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Zant, A. C. Gomez, Photocurrent generation with two-dimensional van der Waals semiconductors, Chem. Soc. Rev. 44 (2015) 3691-718.

DOI: 10.1039/c5cs00106d

Google Scholar

[30] R. H. Duan, Y. C. He, C. Zhu, X. W. Wang, X. H. Zhao, Z. H. Zhang, Q. S. Zeng, Y. Deng, M. Z. Xu, Z. Liu, 2D cairo pentagonal PdPS: Air‐stable anisotropic ternary semiconductor with high optoelectronic performance, Adv. Funct. Mat. 32 (2022) 2113255.

DOI: 10.1002/adfm.202113255

Google Scholar

[31] P. Y. Li, J. T. Zhang, C. Zhu, W. F. Shen, C. G. Hu, W. Fu, L. Yan, L. J. Zhou, L. Zheng, H. X. Lei, Z. Liu, W. N. Zhao, P. Q. Zhao, P. Yu, G. W. Yang, Penta-PdPSe: A new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy, Adv. Mater. 33 (2021) 2102541.

DOI: 10.1002/adma.202102541

Google Scholar