[1]
M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage, Nat Mater. 6 (2007) 824–832.
DOI: 10.1038/nmat2009
Google Scholar
[2]
M. Lanza, A. Sebastian, W. D. Lu, M. L. Gallo, M-F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, J. B. Roldan, Memristive technologies for data storage, computation, encryption, and radio-frequency communication, Science. 376 (2022) eabj9979.
DOI: 10.1126/science.abj9979
Google Scholar
[3]
Y. T. Liu, X. B. Li, H. Zheng, N. K. Chen, X. P. Wang, X. L. Zhang, H. B. Sun, S. B. Zhang, High‐throughput screening for phase‐change memory materials, Adv. Funct. Mater. 31 (2021) 2009803.
DOI: 10.1002/adfm.202009803
Google Scholar
[4]
F. C. Zhou, Z. Zhou, J. W. Chen, T. H. Choy, J. L. Wang, N. Zhang, Z. Y. Lin, S. M. Yu, J. F. Kang, H. S. Wong, Y. Chai, Optoelectronic resistive random access memory for neuromorphic vision sensors, Nat Nanotechnol. 14 (2019) 776–782.
DOI: 10.1038/s41565-019-0501-3
Google Scholar
[5]
B. S. Tang, H. Veluri, Y. D. Li, Z. G. Yu, M. Waqar, J. F. Leong, M. Sivan, E. Zamburg, Y. W. Zhang, J. Wang, A. V. Thean, Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing, Nat Commun. 13 (2022) 3037.
DOI: 10.1038/s41467-022-30519-w
Google Scholar
[6]
Y. F. Pei, Z. Q. Li, B. Li, Y. Zhao, H. He, L. Yan, X. Y. Li, J. J. Wang, Z. Zhao, Y. Sun, Z. Y. Zhou, J. H. Zhou, R. Guo, J. S. Chen, X. B. Yan, A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS‐Core/Shell (SC) nanorod arrays optoelectronic memristor, Adv. Funct. Mater. 32 (2022) 2203054.
DOI: 10.1002/adfm.202203454
Google Scholar
[7]
L. Sun, Y. X. Zhou, X. D. Wang, Y. H. Chen, V. L. Deringer, R. Mazzarello, W. Zhang, Ab initio molecular dynamics and materials design for embedded phase-change memory, npj Comput Mater. 29 (2021) 1-8.
DOI: 10.1038/s41524-021-00496-7
Google Scholar
[8]
S.C. Chen, M.R. Mahmoodi, Y.Y. Shi, C. Mahata, B. Yuan, X. H. Liang, C. Wen, F. Hui, D. Akinwande, D. B. Sttrukov, M. Lanza, Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks, Nat Electronics. 3 (2020) 638-645.
DOI: 10.1038/s41928-020-00473-w
Google Scholar
[9]
S. Kyrsta, R. Cremer, D. Neuschütz, M. Laurenzis, P. H. Bolivar, H. Kurz, Depisition and characterization of Ge-Sb-Te layers for applications in optical data storage, Appl. Surf. Sci. 179, 55-60 (2001).
DOI: 10.1016/s0169-4332(01)00263-x
Google Scholar
[10]
K. Ramesh, J. Non, Preparation and properties of Ge–As–Te glasses over an extended composition ranges, Cryst. Solids. 355 (2009) 2045-2049.
DOI: 10.1016/j.jnoncrysol.2009.05.068
Google Scholar
[11]
S. Prakash, S. Asokan, D. B. Ghare, A guideline for designing chalcogenide-based glasses for threshold switching characteristics, IEEE. ELECTR. DEVICE. L. 18 (2) (1997) 45-47.
DOI: 10.1109/55.553039
Google Scholar
[12]
P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, J. Bednarčik, Short-range order in Ge-As-Te glasses, J. Am. Ceram. Soc. 97 (2014) 1625-1632.
DOI: 10.1111/jace.12823
Google Scholar
[13]
P. Hawlová, F. Verger, V. Nazabal, R. Boidin, P. Němec, Accurate determination of optical functions of Ge-As-Te glasses via spectroscopic ellipsometry, J. Am. Ceram. Soc. 97 (2014) 3044-3047.
DOI: 10.1111/jace.13190
Google Scholar
[14]
S. H. Mohamed, M. M. Wakkad, A. M. Ahmed, A. K. Diab, Structural and optical properties of Ge-As-Te thin films, Eur. Phys. J. Appl. Phys. 34 (2006) 165-171.
DOI: 10.1051/epjap:2006061
Google Scholar
[15]
K. Aryana, J. T. Gaskins, J. Nag, J. C. Read, D. H. Olson, M. K. Grobis, P. E. Hopkins, Thermal properties of carbon nitride toward use as an electrode in phase change memory devices, Appl. Phys. Lett. 116 (2020) 043502.
DOI: 10.1063/1.5134075
Google Scholar
[16]
J. L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, E. Varesi, Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400°C, J. Appl. Phys. 107 (2010) 044314.
DOI: 10.1063/1.3284084
Google Scholar
[17]
K. Ghosh, A. Kusiak, P. Noé, M. C. Cyrille, J. L. Battaglia, Thermal conductivity of amorphous and crystalline GeTe thin film at high temperature: Experimental and theoretical study, Phys. Rev. B. 101 (2020) 214305.
DOI: 10.1103/physrevb.101.214305
Google Scholar
[18]
A. Kusiak, C. Chassain, A. M. Canseco, K. Ghosh, M. C. Cyrille, A. L. Serra, G. Navarro, M. Bernard, N. P. Tran, J. L. Battaglia, Temperature‐dependent thermal conductivity and interfacial resistance of Ge‐rich Ge2Sb2Te5 films and multilayers, Phys. Status. Soli. 16 (2022) 2100507.
DOI: 10.1002/pssr.202100507
Google Scholar
[19]
Z. Yang, A. A.Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection, J. Am. Ceram. Soc. 93 (7) (2010) 1941-1944.
DOI: 10.1111/j.1551-2916.2010.03686.x
Google Scholar
[20]
Y. Saito, K. V. Mitrofanov, K. Makino, P. Fons, A. V. Kolobov, J. Tominaga, F. Uesugi, M. Takeguchi, Chalcogenide materials engineering for phase‐change memory and future electronics applications: From Sb–Te to Bi–Te, Phys. Status Soli RRL. 15 (2021) 2000414.
DOI: 10.1002/pssr.202000414
Google Scholar
[21]
R. Golovchak, L. Calvez, B. Bureau, J. Chem, Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis, Phys. 139 (2013) 054508.
DOI: 10.1063/1.4817332
Google Scholar
[22]
L. Tichý, M. Frumar, J. Klikorka, Some electrical properties of GeBi2Te4 single crystals, Phys. Stat. Sol. 56 (1979) 323.
DOI: 10.1002/pssa.2210560135
Google Scholar
[23]
P. E. Lippens, J. C. Jumas, O. Fourcade, L. Aldon, A. G. Rocque, C. Sénémaudb, Electronic structure of Ge-As-Te glasses, J. Phys. Chem. Solids. 61 (2000) 1761-1767.
DOI: 10.1016/s0022-3697(00)00054-8
Google Scholar
[24]
Z.Y. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.L. Anne, B. Bureau, P. Lucas, Opto-electronphoretic detection of bio-molecules using conducting chalcogenide glass sensors, Opt. Express. 18 (25) (2010) 26755.
DOI: 10.1364/oe.18.026754
Google Scholar
[25]
Y. G. Lu, M. Stegmaier, P. Nukala, M. A. Giambra, S. Ferrari, A. Busacca, W. H. Pernice, R. Agarwal, Mixed-mode operation of hybrid phase-change nanophotonic circuits, Nano Lett. 17 (2017) 150-155.
DOI: 10.1021/acs.nanolett.6b03688
Google Scholar
[26]
H.Y. Zhang, L.J. Zhou, L.J. Lu, J. Xu, N.N. Wang, H. Hu, B.M. Rahman, Z.P. Zhou, J.P. Chen, Miniature multilevel optical memristive switch using phase change material, ACS Photonics. 6 (2019) 2205-2212.
DOI: 10.1021/acsphotonics.9b00819
Google Scholar
[27]
N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. G. Cheng, C. D. Wright, W. H. Pernice, H. Bhaskaran, Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality, Sci. Adv. 5 (2019) eaaw2687.
DOI: 10.1126/sciadv.aaw2687
Google Scholar
[28]
M.M. Agaguseinova, G.R. Gurbanov, M.B. Adygezalova, Russ. J, Physicochemical interactions in the GeSb2Te4-GeBi2Te4 system, Inorg. Chem. 57 (2012) 449-451.
DOI: 10.1134/s0036023612030023
Google Scholar
[29]
M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. Zant, A. C. Gomez, Photocurrent generation with two-dimensional van der Waals semiconductors, Chem. Soc. Rev. 44 (2015) 3691-718.
DOI: 10.1039/c5cs00106d
Google Scholar
[30]
R. H. Duan, Y. C. He, C. Zhu, X. W. Wang, X. H. Zhao, Z. H. Zhang, Q. S. Zeng, Y. Deng, M. Z. Xu, Z. Liu, 2D cairo pentagonal PdPS: Air‐stable anisotropic ternary semiconductor with high optoelectronic performance, Adv. Funct. Mat. 32 (2022) 2113255.
DOI: 10.1002/adfm.202113255
Google Scholar
[31]
P. Y. Li, J. T. Zhang, C. Zhu, W. F. Shen, C. G. Hu, W. Fu, L. Yan, L. J. Zhou, L. Zheng, H. X. Lei, Z. Liu, W. N. Zhao, P. Q. Zhao, P. Yu, G. W. Yang, Penta-PdPSe: A new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy, Adv. Mater. 33 (2021) 2102541.
DOI: 10.1002/adma.202102541
Google Scholar